首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
细菌觅食优化算法(BFOA)具有全局搜索能力强的优点,但存在收敛速度慢的缺陷.为了解决以上问题,结合收敛速度快的粒子群优化算法,提出一种基于粒子群优化的细菌觅食优化算法(BF-PSO),该改进的优化算法具有可操作性和优越性.选用测试函数和对PID控制参数整定的实例进行Matlab仿真,结果进一步显示了BF-PSO的优化能力优于BFOA,收敛速度快,且具有较好的鲁棒性.  相似文献   

2.
麦雄发  李玲 《计算机应用研究》2012,29(11):4131-4133
针对细菌觅食算法在优化过程中环境感知能力较弱且容易陷入局部极值的缺陷,将梯度粒子群算法的基本思想引入细菌觅食算法中,改进原算法的收敛速度和收敛能力,并据此提出了基于梯度粒子群算法的细菌觅食算法GPSO-BFA。该算法既利用了细菌觅食算法出色的全局搜索能力,又借助梯度粒子群算法的快速局部寻优能力,很好地将两者的优势结合在一起。基于六个高维Benchmark函数的实验结果显示,该算法在收敛速度和精度方面都优于其他四种细菌觅食算法。  相似文献   

3.
基于粒子群优化算法的系统可靠性优化   总被引:1,自引:0,他引:1  
系统可靠性优化问题是典型的NP难题,建立了可靠性冗余优化模型,采用粒子群优化算法对其进行求解。通过对其它文献中仿真实例的计算和结果对比,表明了算法对求解可靠性优化问题的可行性和有效性。  相似文献   

4.
粒子群算法与细菌觅食算法在优化问题中均体现了较好的性能,但由于各自特定的进化机制,也都存在缺点。粒子群优化(PSO)算法在优化过程中过快陷入局部极值,为了避免这个缺陷,提出了一种新的混合算法。通过PSO算法完成整个空间的全局搜索,通过细菌觅食算法(BFOA)中的趋向性运动算子完成局部搜索的功能,再通过典型函数进行测试,结果表明新算法可以有效弥补细菌觅食算法速度不快和粒子群算法精度不高的缺陷,同时部分地避免了局部收敛的问题,从而适用于解决复杂函数的优化问题。  相似文献   

5.
针对标准粒子群优化(PSO)算法在寻优过程中容易出现早熟的情况,提出一种群能量恒定的粒子群优化(SEC-PSO)算法.算法根据粒子内能进行动态分群,对较优群体采取引入最差粒子的速度更新策略,对较差群体采取带有惩罚机制的速度更新策略,由其分担由于较优群体速度降低而产生的整群能量损失,从而有效地避免了PSO算法的早熟.典型优化问题的仿真结果表明,该算法具有较强的全局搜索能力和较快的收敛速度,优化性能得到显著的提高.  相似文献   

6.
洪蕾 《软件》2014,(8):83-86
本文分析了粒子群算法和人工鱼群算法的基本原理,提出粒子群及人工鱼群算法优化策略,该算法综合利用了人工鱼群算法良好的全局收敛性及粒子群算法快速的局部收敛性,算法易实现,同时,克服人工鱼群算法收敛速度慢及粒子群算法后期全局收敛差的缺点,发挥了两者的优越性,粒子群及人工鱼群优化算法不仅具有较好的全局收敛性能,而且具有较快的收敛速度。  相似文献   

7.
基于粒子群优化的快速细菌群游算法   总被引:2,自引:0,他引:2  
针对细菌觅食算法(Bacterial foraging algorithm,BFA)收敛速度慢的特点,提出一种快速细菌群游算法(Fast bacterial swarming algorithm,FBSA).本算法通过借鉴粒子群优化(Particle swarm optimization,PSO)算法的信息共享机制,对细菌觅食算法的群体感应(Quorum sensing) 机制进行改进,使每个细菌在优化过程中具备感应周围细菌位置、并向细菌群体历史最优位置游动的能力.同时,通过动态调整细菌的搜索步长,加强了算法在优化初期的全局搜索能力以及优化后期的局部搜索能力.对基准测试函数进行仿真实验的结果表明,FBSA对于大部分高维函数的优化能力优于BFA和PSO,并且具有更快的收敛速度.  相似文献   

8.
粒子群优化算法研究综述   总被引:2,自引:0,他引:2  
赵会洋  王爽  杨志鹏 《福建电脑》2007,(3):40-41,24
粒子群优化算法是一类基于群体智能的启发式全局优化技术,群体中的每一个微粒代表待解决问题的一个候选解,算法通过粒子间信息素的交互作用发现复杂搜索空间中的最优区域。本文介绍了粒子群优化算法的基本原理.给出了多种改进形式以及研究现状,并提出了未来可能的研究方向。  相似文献   

9.
针对标准粒子群优化算法(PSO)在寻优过程中容易出现早熟的问题,提出一种基于周期性演化策略的粒子群优化算法.该策略通过在速度更新方程中构建基于粒子群能量的粒子群最优值扰动项,使得粒子群能量在演化过程中可以周期性变化.相比标准PSO算法,当粒子群能量较大时,能够增强局部搜索能力;当粒子群能量较小时,能够增强全局搜索能力.典型优化问题的仿真结果表明,所提出的算法与线性下降惯性权重粒子群优化(LWPSO)和PSO算法相比,优化性能得到了显著提高.  相似文献   

10.
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的,用于解决优化问题的一类新兴的随机优化算法。本文首先介绍PSO算法的基本原理和工作机制;然后介绍粒子群优化算法的优化策略,包括提高收敛速度﹑算法离散化﹑提高总群多样性;最后对其将来的发展进行了展望。  相似文献   

11.
投资组合优化问题是一个复杂的组合优化问题,属于NP难问题,传统算法很难解决这一问题。将二次粒子群算法应用到投资组合优化问题中,并采用参数的自适应变化。数值模拟表明该算法在投资组合优化问题中能避免陷入局部最优,加快达到全局最优的收敛速度,并在一定意义下优于标准粒子群算法。  相似文献   

12.
原DV_Hop算法中存在节点间距离估算的累计误差以及待测节点坐标求解时的误差问题。在平均跳距的计算阶段,信标节点先后以两个通信半径广播自身位置信息,精确了节点间最小跳数值,加入修正因子来校正平均跳距,得到更精确的未知节点坐标。采用基于线性优化惯性权重和线性加权改进的学习因子同步变化的粒子群算法来优化待测节点位置解析误差,降低待测节点的平均定位误差。仿真结果表明,与原有算法相比,该方法可以有效地降低估算距离误差,提高待测节点的定位精度。  相似文献   

13.
一种基于混沌优化机制的双粒子群优化算法   总被引:1,自引:0,他引:1  
针对标准粒子群优化算法PSO(Particle Swarm Optimization)在处理高维复杂函数时存在收敛速度慢、易陷入局部最优和算法通用性不强等缺点,提出了一种基于混沌优化机制的双粒子群优化算法.它借鉴群体适应值方差的早熟判断机制,同时提出了一种逐步缩小搜索变量空间的新方法.典型数值实验表明,该算法效率高、优化性能好、对初值具有很强的鲁棒性.尤其是该算法具有很强的避免局部极小能力,其性能远远优于单一优化方法.  相似文献   

14.
针对大规模的未知环境,对一种SA-PSO(Simulated Annealing-Particle Swarm Optimization)算法的多机器人构建地图方法进行研究。多机器人构建地图,即将多个机器人建立的局部地图融合成全局地图,可以更加高效地完成环境地图的绘制。利用粒子群优化(PSO)算法搜索局部地图之间的最优转换矩阵来进行地图配准;再根据局部地图重叠区域匹配的成功率设计自适应概率函数,即重新进行地图配准的概率;最后将配准后的局部地图融合成全局地图。该方法有效解决了PSO算法易陷入局部最优引起的地图融合失败问题,提高了地图融合的成功率。  相似文献   

15.
混沌微粒群优化算法利用了粒子群优化算法收敛速度快和混沌运动所具有的随机性、遍历性和初值敏感性,将混沌状态引入到优化变量中,把混沌的遍历范围映射到优化变量的取值范围.在算法执行过程中对优秀个体混沌扰动,有利于跳出局部极值点,搜索到全局最优解.分别用微粒群优化算法和混沌微粒群优化算法求解函数优化问题,对算法的性能进行检验,检验结果显示:混沌微粒群优化算法搜索全局最优解的成功率和收敛速度都要优于微粒群优化算法.将混沌微粒群优化算法与阈值法相结合,在算法初始化阶段对粒子位置混沌初始化;在算法运行期间对优秀个体进行混沌扰动避免落入局部最优,较好地解决了传统的多阈值图像分割方法中运算量大的问题.实验结果表明,混沌微粒群优化算法用于阈值寻优减少了搜索时间,提高了收敛率.  相似文献   

16.
针对粒子群算法早熟收敛和搜索精度低的问题,提出了基于混沌变异的小生境量子粒子群算法(NCQPSO).该算法结合小生境技术并加入了淘汰机制.使算法具有良好的全局寻优能力.变尺度混沌变异具有精细的局部遍历搜索性能.使算法具有较高的搜索精度,实验结果表明,NCQPSO算法可有效避免标准PSO(Particle Swarm Optimization)算法的早熟收敛,具有寻优能力强、搜索精度高、稳定性好等优点.也优于原始的量子粒子群算法QPSO(Quantum-behaved Particle Swarm Optimization).  相似文献   

17.
A sequence of musical chords can facilitate musicians in music arrangement and accompaniment. To implement an intelligent system for chord recognition, in this article we propose a novel approach using artificial neural networks (ANN) trained bythe particle swarm optimization (PSO) technique and back-propagation (BP) learning algorithm. All of the training and testing data are generated from musical instrument digital interface (MIDI) symbolic data. Furthermore, in order to improve the recognition efficiency, an additional feature of cadencesis included. In other words, cadence is not only the structural punctuation of a melodic phrase but is considered as the important feature for chord recognition. Experimental results of our proposed approach show that adding a cadence feature significantly improves recognition rate, and the ANN-PSO method outperforms ANN-BP in chord recognition. In addition, because preliminary experimental recognition rates are generally not stable enough, we chose the optimal ANNs to propose a two-phase ANN model to integrate the results among many models.  相似文献   

18.
基于粒子群算法的非线性方程组求解   总被引:8,自引:0,他引:8  
将非线性方程组的求解问题转化为无约束极大极小优化问题,并应用一种新的进化计算(EC)方法——粒子群算法(PSO)求解此优化问题。数值实验的结果验证了该方法的可行性和有效性。  相似文献   

19.
基于粒子群优化算法求解软件可靠性分配问题   总被引:2,自引:0,他引:2  
首先介绍粒子群优化的搜索策略与基本算法,通过构造具有自适应权重ω的改进方法,有效地改善了粒子群优化算法的搜索效率和搜索精度,并应用于求解软件可靠性分配问题中。实验表明了PSO在求解软件可靠性分配问题的有效性。  相似文献   

20.
在对标准微粒群算法分析的基础上,将它与BSP并行计算模型相结合,设计并实现了一种基于BSP并行计算模型的并行微粒群算法.这种基于BSP并行计算模型的并行微粒群算法改变了标准微粒群算法的结构,提高了算法求解效率.实验结果表明,该并行算法的性能比标准微粒群算法有了很大的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号