共查询到18条相似文献,搜索用时 78 毫秒
1.
提出了一种改进的基于最大熵原理和Gabor滤波技术的织物疵点检测方法。采用多通道Gabor滤波算法,取模值特征为输出,利用最大熵分割模值图像,再进行图像融合,最后计算轮廓的周长和面积去除孤立点得到最终检测结果。利用OpenCV算法库,选取了四种具有代表的织物疵点图片进行验证,实验结果表明,该方法降低了计算复杂度、检测速度快、检测效果好、无须事先学习,适用于不同疵点类型的各种检测。 相似文献
2.
针对纺织过程中可能出现的瑕疵问题,提出了一种新的织物疵点分割方法--四分法和织物疵点特征提取方法--Radon小波低分辨率特征(RWLRC)。该算法先将织物图像经过Gabor滤波器预处理,再将预处理之后的织物图像等分成四部分,通过4部分的最大值与最小值确定阈值并分割。将疵点形状的二值图像进行Radon变换并得到特征曲线,应用Mallat塔式分解算法进行特征降维,最后由神经网络进行状态识别和特征分类。实验结果表明,四分法无需与正常织物对照分割,具有自适应性,Radon小波低分辨率特征的特征值只有3维,具有特征维数低、疵点形状描述准确等特点,所提方法可以有效检测与识别缺纬、缺经、油污、漏洞等常见疵点。 相似文献
3.
针对织物疵点检测问题,提出了一种基于Gabor滤波器和方向梯度直方图(HOG)特征的织物疵点检测算法。首先使用3个尺度、4个方向的Gabor滤波器组对织物图像进行滤波,并做融合处理,增强织物图像疵点区域和背景纹理之间的对比度;然后使用双边滤波减弱图像背景纹理和噪声的影响;最后将图像划分成均匀子块,提取每个子图像块的HOG特征,利用图像疵点区域和背景纹理的HOG特征差异进行阈值分割实现织物疵点的检测。实验选取5种常见织物疵点进行验证,并与传统的Gabor滤波算法进行了实验对比,结果表明该算法可以较好的抑制织物背景纹理的干扰,更加准确的检测出织物疵点。 相似文献
4.
给出了基于Gabor滤波器组的织物疵点检测方法。在分析Gabor滤波器时频特性的基础上,针对素色坯布织物疵点图像,设计了椭圆形多尺度多方向的Gabor滤波器组,并应用该滤波器组在频域对织物疵点图像进行滤波处理,对滤波后的多幅图像进行融合与分割处理,将疵点从织物背景中分割出来,从而实现了疵点的检测。实验结果证明了该方法的有效性。 相似文献
5.
6.
7.
利用织物的纹理正常部分与疵点在小波系数的分布范围不同,加以分离;在先前的纹理疵点检测方法里,一般必须训练纹理的正常部分,为了解决这个问题,提出一个利用疵点与正常部分在影像上的特性差异来自动决定训练区块的方法,可以使图像在输入的时候,重新取样训练,降低了因环境变化而造成的检测错误发生率. 相似文献
8.
提出一种基于织物纹理特征的最优Gabor滤波器设计方法.分别建立了正常纹理匹配和疵点纹理匹配的Gabor滤波器优化设计模型,并采用小生境遗传算法对两种模型进行求解.通过比较和分析两种滤波器的检测结果发现,由正常纹理匹配模型得到的最优Gabor滤波器更适宜于织物疵点的识别与分割,并且其中心频率与纹理图像功率谱中能量最集中的谐波成分相一致,因而可以极大地缩短求解优化模型所花费的时间. 相似文献
9.
使用Gabor滤波器组进行布匹在线疵点检测与疵点图像分割。通过定义一个分辨力函数和一些合成的疵点图像,对已有的Gabor滤波器组的参数选择方式做出评价,提出了在实时应用场合有效地确定Gabor滤波器组参数的方法。分析指出:Gabor滤波器的实部输出是主要因素;滤波器的方位角仅选取疵点出现得最多的水平和垂直方向,而径向中心频率的选取依赖于纹理本身的固有频率;滤波器的长度也应与纹理的固有周期一致。尽管Gabor滤波器的个数减少到4个以满足实时性要求,但结果表明,滤波器组仍能很好地检测和分割出大多数疵点。 相似文献
10.
针对钢铁铸坯表面检测的缺陷复杂性问题,从图像处理及图形特征角度提出一种基于显著性区域特征的算法.该算法首先对源图像进行显著性特征区域处理和Gabor小波滤波处理,得到了对应的特征图像;然后再将2幅图像中的特征区域进行融合,得到可信度较高的缺陷特征区域图像;最后在缺陷区域中用训练好的Adaboost分类器检测缺陷,得到最终的缺陷定位结果.该算法结合了显著性特征和Gabor小波特征,既缩小了Adaboost分类器的搜索范围,也提高了排除伪缺陷的能力,具有较快的定位速度和较高的准确率.实验结果表明,该算法能获得较好的效果,具有较高的实用价值. 相似文献
11.
随着计算机视觉的发展,图像显著区域检测在图像处理领域越来越重要。为了对自然图像中的显著区域进行准确的检测,提出了一种基于区域对比的图像显著性检测方法。首先对图像进行超像素分割预处理,然后利用图像的颜色特征和空间特征算出区域对比度,再结合图像子区域与其邻域像素平均特征向量的距离以及中心优先原则得到图像高质量的显著图。仿真实验结果表明,与其他的显著性检测算法相比,可以更加有效地检测出显著性目标,更好地抑制背景。 相似文献
12.
In order to increase the automatic quality control level in the textile industry, depending on the big data collected by the Internet of things of the textile factories, this paper proposes a novel visual saliency–based defect detection algorithm, which has the capability of automatically detecting defect in both nonpatterned and patterned fabrics. The algorithm employs the histogram features extracted from the saliency maps to detect the fabric defects. The algorithm involves three main steps: (1) saliency map generation to highlight the defective regions and suppress the defect‐free regions, (2) saliency histogram features extraction and selection to obtain the feature vectors that can effectively discriminate between the defective and defect‐free fabric images, and (3) fabric defect detection using a two‐class support vector machine classifier that has been trained using sets of feature vectors extracted from defective and defect‐free fabric samples. Experimental results show that our method yields accurate detections, outperforming other state‐of‐the‐art algorithms. 相似文献
13.
14.
在分析了现有拣选系统需要事先进行样本特征提取的情况下,为适应复杂多变的拣选环境,提出了基于显著性检测的自适应目标拣选算法.该方法通过前景目标的相互对比,识别出最具显著性特征的物体作为拣选对象,避免了预先学习的过程,并能用分析结果不断修正识别特征,提高了系统的工作效率和自动化程度.设计了适用于工业机器人的拾取控制系统,涉及网络通信、总线管理和运动控制等多方面.实验结果表明了系统的准确性与稳定性. 相似文献
15.
16.
检测整幅窜改图像的方法增加了许多非必要的计算量,为了降低计算复杂度和进一步提高检测精确率,提出了一种基于改进显著图和局部特征匹配的copy-move窜改检测方法。首先,结合图像梯度改进显著图,分离出包含图像高纹理信息的局部显著区域;其次,只对该局部区域采用SIFT(scale invariant feature transform)算法提取特征点;然后,对显著性小的图像采用密度聚类和二阶段匹配策略,对显著性大的图像采用超像素分割和显著块特征匹配的策略;最后,结合PSNR和形态学操作来定位窜改区域。在两个公开数据集上进行实验,该方法的平均检测时间小于10 s,平均检测精确率大于97%,均优于所对比的方法。实验结果表明,该方法能够大幅缩减检测时间、有效提高检测精确率,并且对几何变换和后处理操作也都具有较好的鲁棒性。 相似文献
17.
Although it has been studied in some depth, texture characterization is still a challenging issue for real-life applications.
In this study, we propose a multiresolution salient-point-based approach in the wavelet domain. This incorporates a two-phase
feature extraction scheme. In the first phase, each wavelet subband (LH, HL, or HH) is used to compute local features by using
multidisciplined (statistical, geometrical, or fractal) existing texture measures. These features are converted into binary
images, called salient point images (SPIs), via threshold operation. This operation is the key step in our approach because
it provides an opportunity for better segmentation and combination of multiple features. In the final phase, we propose a
set of new texture features, namely, salient-point density (SPD), non-salient-point density (NSPD), salient-point residual
(SPR), saliency and non-saliency product (SNP), and salient-point distribution non-uniformity (SPDN). These features characterize
various aspects of image texture such as fineness/coarseness, primitive distribution, internal structures, etc. These features
are then applied to the well-known K-means algorithm for unsupervised segmentation of texture images. Experimental results
with the standard texture (Brodatz) and natural images demonstrate the robustness and potential of the proposed features compared
to the wavelet energy (WE) and local extrema density feature (LED).
The text was submitted by the authors in English.
Md. Khayrul Bashar was born in Chittagong, Bangladesh in 1969. He received his B.E. (1993), M.Tech. (1998), and PhD (2004) degrees from Bangladesh
University of Engineering and Technology (BUET), Indian Institute of Technology (IIT) Bombay, and Nagoya University, respectively.
He was a research engineer from 1995 to 1999 at Bangladesh Space Research and Remote Sensing Organization (SPARRSO) and assistant
professor from 1999 to 2000 at the department of Electrical and Electronic Engineering, Chittagong University of Engineering
and Technology (CUET), Bangladesh. Since 2004, he has been a research fellow in the department of Information Engineering,
Nagoya University, Japan. Dr. Bashar is a member of IEEE, IEICE, BCS, and IEB. His research interest includes developing algorithms
for image understanding, content-based image retrieval and web-application design, analysis and testing.
Noboru Ohnishi was born in Aichi, Japan in 1951. He received his B.E., M.E., and PhD degrees in Electrical Engineering from Nagoya University
in 1973, 1975, and 1984, respectively. From 1975–1986, he worked as a researcher in the Rehabilitation Engineering centre
under the Ministry of Labor, Japan. In 1986, he joined as an Assistant Professor in the dept. of Electrical Engineering of
Nagoya University. Currently, he is a professor of the dept. of Information Engineering at the same university. During his
long professional life, he has also served as a visiting researcher (1992–1993) in the laboratory of artificial intelligence
at Michigan University, and team leader (1993–2001) at the Bio-mimetic Control Research Center, RIKEN, Nagoya, Japan. He also
holds many respectable positions at various professional bodies in Japan and he has published many research papers (more than
140) in various international journals. For his technical creativity and ingenuity, he was awarded SICE society prizes in
1996 and 1999. His research interest includes brain analysis, modeling, and brain support, computer vision, and audition.
He is a member of IEEE, IPSJ, IEICE, IEEJ, IIITE, JNNS, SICE and RSJ.
Kiyoshi Agusa received his PhD degree in computer science from Kyoto University in 1982. Currently, he is a professor of the department
of Information Systems, Graduate School of Information Science, Nagoya University. His research area includes software engineering,
program repository, and software reuse. Since 2003, he has been working as a team leader of a university-industry collaboration
project entitled “e-Society,” which is a part of the “e-Japan” project, and doing research on reliability issues for web-based
applications. He is a member of IPSJ, ISSST, IEICE, ACM and IEEE. 相似文献
18.
针对目前卷积神经网络提取图像特征不充分导致的显著性提取效果不明显的问题,提出了一种多层卷积特征融合的自编码显著性区域提取算法.在使用卷积网络提取图像特征时,其浅层卷积特征一般提取的是图像的细节特征如颜色、纹理和位置特征,深层次卷积特征一般是图像的语义特征,在编码层将浅层卷积特征经过下采样融合到深层次的卷积特征中,并将深层次卷积特征进行上采样融合到浅层卷积特征中,实验表明这样可以大大提高编码质量;在解码中将编码时的卷积特征也进行融合,可以获取到解码丢失的信息进而得到更优的解码图像.此外还设计了逐层监督的方式来指导解码层的训练,即用标准的区域提取图进行下采样作为每一层解码层的标准图进行监督训练.实验结果表明,该方法可以在PAGRN的基础上将F度量平均提升0.071,平均绝对误差MEA平均降低0.031. 相似文献