首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
以FePO4.2 H2O、Li2CO3为原料,以葡萄糖为碳源和还原剂,采用喷雾干燥法合成球形LiFePO4/C材料,研究了浆料固含量和进料速率对颗粒大小的影响。X射线衍射(XRD)和扫描电镜(SEM)分析表明:喷雾干燥法合成的LiFePO4/C具有完整的橄榄石型结构,颗粒呈规整的类球状。在室温下测试了LiFePO4/C材料的充放电性能。结果表明,材料具有良好的电化学性能。750℃所得LiFePO4/C材料在0.2 C、0.5 C、1 C和3 C电流密度下的首次放电比容量分别为144.1、139.2、135.5 mAh/g和125.1mAh/g;材料循环性能良好,经10次循环后,材料的放电比容量都保持在99%以上。  相似文献   

2.
原勇强  陈丽  吴孟涛  徐宁 《电源技术》2012,36(7):947-950
通过高温固相还原FePO4.2 H2O的方法制备橄榄石结构的LiFePO4正极材料,分别采用蔗糖和Fe粉为还原剂,在二次煅烧的工艺下考察不同温度及煅烧时间等因素对材料电化学性能的影响,得出最佳工艺组合。结果表明Fe粉为还原剂性能优越,在700℃煅烧8 h得到的样品最佳,X射线衍射光谱法(XRD)和扫描探针显微镜(SEM)的测试也显示在该工艺下合成样品具有较好的晶体结构。同时两种方法合成的样品在0.05 C时的最大放电比容量分别达到152 mAh/g和156 mAh/g,且具有良好的循环稳定性。  相似文献   

3.
采用高温固相法合成LiFePO4/C正极材料,并对其物理特性和电化学性能进行了分析。研究结果表明,该材料具有较高的振实密度、均匀的粒度分布、较小的比表面积,且具有单一的橄榄石结构,没有其它杂相。实验电池测试表明,材料具有较高的放电比容量及平稳的放电平台,0.2C充放电时,放电比容量达到152.5mAh/g。为了进一步评估该材料的循环性能,制造了以该材料为正极活性物质的2.2Ah标准软包装锂离子电池。电池经3000次充放电循环,其放电容量仍有1 919mAh,放电容量保持率为84.5%,结果表明材料的循环稳定性能优良。  相似文献   

4.
张可贺  白咏梅  邱鹏  文中流  韩绍昌 《电源技术》2012,36(7):935-936,956
采用高温固相合成工艺,以葡萄糖为碳源对锂离子电池正极材料LiFePO4进行改性研究。通过X射线衍射(XRD)分析,扫描电子显微镜(SEM)及粉末比电阻对样品的晶体结构,微观形貌及电子电导率进行表征。结果表明加入葡萄糖未改变LiFePO4的晶体结构,葡萄糖的加入改善了材料的颗粒形貌,提高了材料的电子电导率。恒电流充放电结果表明:当碳包覆量为10%时LiFePO4的电化学性能最佳,0.1 C倍率下试样的首次放电比容量为155.57 mAh/g,倍率性较好。  相似文献   

5.
王荣 《电源技术》2013,37(8):1319-1321
随着锂离子电池在电动汽车、电动自行车等领域的应用,LiFePO4正极材料以其高安全性、长寿命的优点备受关注。从性能参数上分析对比了LiFePO4正极材料的特性,从应用角度讨论了LiFePO4材料在电池生产制造过程中存在的问题,并针对LiFePO4材料技术及电池制作工艺技术提出了改善建议。  相似文献   

6.
采用聚丙烯酰胺(PAM)软模板法合成了LiFePO4/C正极材料.在0.1 mA/cm2电流密度下,PAM软模板法合成的LiFePO4/C材料的放电比容量可达120mAh/g,且可逆性增强.材料的振实密度达到1.19g/cm3.透射电镜和原子力显微镜图像研究表明合成的活性材料和所掺杂的碳具有纳米共生结构,且颗粒具有较大的电化学活性比表面,颗粒间无团聚现象.采用X射线衍射实验,对PAM软模板剂在合成过程中的改性作用进行了研究.  相似文献   

7.
软模板剂对LiFePO4/C正极材料性能的影响   总被引:1,自引:0,他引:1  
杨书廷  刘玉霞  尹艳红  王辉 《电池》2007,37(2):95-97
采用软模板-固相合成法合成橄榄石型LiFePO4/C正极材料.通过XRD、SEM以及交流阻抗等对材料的晶体结构和电化学性能进行研究,并研究了葡萄糖、丙烯酰胺和乳酸亚铁作为软模板剂对材料性能的影响.结果表明:以葡萄糖为软模板剂合成的LiFePO4/C材料的首次放电比容量高达140.2 mAh/g,循环20次后,放电容量无明显的衰减现象.  相似文献   

8.
通过高温固相法合成以Fe2O3为铁源,Li2CO3为锂源,柠檬酸为碳源的Li0.98M0.02Fe0.99Mg0.01PO4/C(M=Al,Ti,V)锂离子电池正极材料,利用了X射线衍射光谱法(XRD)、循环伏安(CV)、电化学阻抗谱(EIS)和恒流充放电等实验方法研究了在铁位固定掺杂摩尔分数为1%的Mg的情况下,变换锂位掺杂金属对产物结构和电化学性能的影响。结果表明,少量金属掺杂后的产物Li0.98M0.02Fe0.99Mg0.01PO4/C其充放电容量和循环性能都比未掺杂的纯相要高。在室温下,Li0.98Al0.02Fe0.99Mg0.01PO4/C材料以0.1倍率放电时,首次比容量达到156 mAh/g,循环几次后达到160.2 mAh/g,循环性能良好,晶胞系数c/a的值与其他掺杂材料相比较高,结晶度好。  相似文献   

9.
分别以蔗糖、酚醛树脂、聚丙烯作为碳源,采用高温固相法制备了橄榄石型锂离子电池正极LiFePO4/C复合材料,并考察不同碳源对合成的LiFePO4/C复合材料电化学性能的影响。采用XRD、SEM、拉曼光谱分析、恒电流充放电测试和交流阻抗分析等方法对材料的结构、表面形貌及电化学性能进行了研究。结果表明,以聚丙烯为碳源合成的LiFePO4/C材料具有最佳的电化学性能。0.1C的放电比容量为154.9mAh/g,在2C下的放电比容量达131.3mAh/g,循环30次后容量为130.1mAh/g。  相似文献   

10.
利用固相法,采用Re3+(R e=La、Nd、Y)三种不同的稀土金属离子对LiFePO4/C进行掺杂。用XRD、SEM、电子电导率测试和电化学测试对材料的结构和性能进行分析表征。研究结果表明:少量掺杂后未影响到LiFePO4的晶体结构。三种掺杂试样中以掺杂Y3+的电化学性能最好,在0.1 C倍率下,第三次循环的放电比容量为142.09 m Ah/g,充放电效率为99.02%,在0.5 C和1 C倍率下放电比容量仍有133.38、116.91 m Ah/g。引入稀土离子掺杂是提高LiFePO 4正极材料电化学性能的有效方法。  相似文献   

11.
以FePO4·xH2O和无水FePO4为铁源,采用高温固相-碳还原法制备LiFePO4/C。X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、粒度分布以及比表面积试验表明:以FePO4·xH2O为铁源时,产品颗粒均匀,粒度分布窄,振实密度仅为0.8g/mL;以无水FePO4为铁源时,产品粒度分布较宽,最大粒径达到32μm左右,振实密度高达1.2g/mL。电化学性能测试表明:以FePO4·xH2O为铁盐的产物,充电时间长,0.2C比容量为138mAh/g;以无水FePO4为铁盐的产物,充电时间短,比容量提高到142mAh/g。  相似文献   

12.
以市售FoPO4·2 H2O为原料,利用正交实验方法优化碳热还原法制备LiFePO4/C复合正极材料的合成工艺,考察合成温度、原料摩尔比及保温时间等因素对材料形貌及电化学性能的影响,得到最佳工艺组合:合成温度650℃,保温时间16 h,原料摩尔比2∶1∶2.5.按最佳工艺合成的样品0.2 C与1 C时的最大放电比容量可达151.4、141.2mAh/g,振实密度可达1.4 g/cm3,且表现出良好的循环稳定性.  相似文献   

13.
以甘氨酸为络合剂,蔗糖为碳源,采用溶胶-凝胶法制备了LiFePO4、LiFePO4/C正极材料。利用TG、XRD、SEM测试技术对材料的热稳定性、物相结构、形貌进行表征。结果表明:LiFePO4和LiFePO4/C都具有单一的橄榄石型晶体结构,与纯相LiFePO4相比,LiFePO4/C具有更小的颗粒粒径和更好的电化学性能,以0.1 C、0.5 C倍率放电,首次放电比容量分别为157.5、140.7 mAh/g,循环20次后容量保持为152.4、130.2 mAh/g。  相似文献   

14.
采用以七水合硫酸亚铁(FeSO4·7H2O)为铁源,磷酸(H3PO4)为磷源,以改进的均相沉淀法制备的超细(纳米)FePO4为前驱体,讨论了高温固相碳热还原法的煅烧温度和C添加量对锂电池正极材料LiFe PO4形貌和电化学性能的影响。实验结果表明,当煅烧温度为800℃,C添加量为每摩尔FePO432 g葡萄糖,制得的LiFePO4/C的性能较好。  相似文献   

15.
胡国荣  周玉琳  彭忠东  高旭光 《电池》2007,37(5):339-341
以FeSO4、H3PO4和H2O2为原料,通过控制反应温度、pH值、FeSO4与H3PO4的物质的量比等反应条件,合成了前驱体FePO4.在氩气气氛中煅烧FePO4、Li2CO3和葡萄糖的混合物,制备了LiFePO4.充放电测试表明:LiFePO4样品具有3.4 V的放电电压平台,在0.1 C倍率下的首次充放电比容量分别为154.1 mAh/g和146.5 mAh/g.  相似文献   

16.
以Fe(NO3)3.9H2O为铁源,聚乙二醇(PEG)为碳源、还原剂和分散剂,用旋转蒸干法制备LiFePO4/C复合材料。用XRD、场发射扫描电子显微镜(FE-SEM)和恒流充放电测试,分析了PEG用量的影响。当n(PEG)∶n(Fe)≥0.25∶1.00时,产物为纯橄榄石型LiFePO4结构;增加PEG用量,有利于得到粒径细小均匀、电导率高的产物。当n(PEG)∶n(Fe)=0.50∶1.00时,产物的电化学性能较好,0.1C首次放电比容量为164.1 mAh/g,第30次循环时的容量衰减率为1.3%。  相似文献   

17.
氧化淀粉为碳源冷冻干燥法制备LiFePO4/C的研究   总被引:1,自引:0,他引:1  
以氧化淀粉为碳前驱体和分散剂,采用冷冻干燥法制备LiFePO4/C正极材料,利用XRD、SEM、恒流充放电等手段对LiFePO4/C复合正极材料的物相结构、表观形貌及材料的电化学性畿进行研究.结果表明:冷冻干燥法可以使原料变成粉末,同时不破坏其均匀的混合状态;以氧化淀粉为碳源,碳含量为7.07%,在700℃高温下煅烧12 h合成的材料具有完整的晶型结构,颗粒大小均一,首次放电比容量达到165 mAh/g,接近理论放电比容量.1 C倍率下,50次循环后的容量衰减仅为0.20%,5 C倍率下,50次循环后的容量衰减为1.39%,电化学性能优异.  相似文献   

18.
以Gd2O3作为掺杂化合物,分别采用Fe2O3和Fe C2O4·2 H2O作为铁源固相法合成LiFePO_4/C材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、能量散射光谱(EDS)、LAND电池测试系统及电化学工作站等对材料的晶体结构、形貌和电化学性能进行测试,重点分析了材料的低温特性。结果表明:以Fe C2O4·2 H2O为铁源合成的LiFePO_4/C展示出较好的电化学性能,尤其是低温性能。25℃下,0.1 C、5 C首次放电比容量分别为146.1、108.8 m Ah/g,-20℃时相同倍率下放电比容量为99.8、73.9 m Ah/g,分别为25℃时放电比容量的68.3%和67.9%,具有较好的低温性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号