首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
兰风岗  陆成栋  姜涛  张勇  马三剑 《广东化工》2012,39(11):145-146,97
利用中温UASB反应器处理印染过程中排放的煮炼段废水,分析了中温条件下对有机污染物的去除率效果。研究表明,在中温(37±2℃)环境下,厌氧微生物能很快适应废水,反应器容积负荷在8.2 kgCOD/(m3·d)左右时,CODCr去除率可达90%以上,且运行稳定。  相似文献   

2.
复合式膜生物反应器处理制药废水的研究   总被引:1,自引:0,他引:1  
对一体式与复合式膜生物反应器(MBR)处理化学合成类制药废水的厌氧反应器出水的效果进行对比研究,结果表明:在对COD和NH3-N的去除效果上,两种型式的MBR差别不大,均能保持98%和94%的高去除率,复合式MBR对总氮(TN)的去除效果高于一体式MBR,而对于总磷(TP)两种型式MBR的去除效果均不理想。  相似文献   

3.
本试验采用涡凹气浮(CAF)+高效厌氧反应器(HAF)+膜生物反应器(MBR)组合工艺处理聚四氢呋喃(PTMEG)生产废水,着重研究影响HAF和MBR稳定性的相关参数,同时对系统进行了冲击负荷实验。试验结果表明,在系统稳定运行时,废水COD总去除率可达到:98.8N,氨氮总去除率:99.2%,出水能够达到了《污水综合排放标准》(GB8978—1996)二类水域一级标准。  相似文献   

4.
针对碳、氮、磷比例失调碳源偏低城市污水,因碳源不足而降低脱氮除磷效率的难题及连续流生物膜法除磷率低的缺点,为提高生物膜的除磷效率,通过构建厌氧/好氧交替运行的序批式生物膜反应器(SBBR),合理调控厌氧和好氧段的运行时间,处理广州地区碳源偏低的城市污水,研究其生物除磷的效果和控制影响因素。结果显示,在无需额外添加碳源的条件下,当进水TP浓度为1.65-7.10mg/L,出水TP浓度可在0.085-0.5mg/L之间,去除率达到90%以上。在此基础上,对SBBR的厌氧和好氧段的工艺特性及控制影响因素进行系统分析,指出厌氧/好氧交替运行的工序是SBBR处理城市污水高效除磷的前提和基础,而确保厌氧磷的最大有效释放是SBBR系统高效除磷的关键。  相似文献   

5.
通过投加聚磷菌与未投加聚磷菌的对比试验,研究投加优势菌种后淹没序批式生物膜法(SBBR)除磷性能。试验结果表明:SBBR反应器中投加生物优势菌种后,厌氧段总磷释放和好氧段总磷吸收的效果明显增加,提高了除磷效率,缩短了停留时间。在填料装填密度为30%,水力停留时间为7h(其中厌氧3h,好氧4h),pH值在6.5~8.5时,进水COD在0.2~1.5kgCOD/m3.d时,投加菌种的反应器中COD和TP去除率均明显高于未投加菌种的反应器,去除效率提高5%以上,反应器对COD和TP的变化具有更强的适应性。  相似文献   

6.
生物膜法处理2,3-二甲基苯胺废水试验研究   总被引:2,自引:0,他引:2  
采用缺氧折流板生物膜和循环移动载体生物膜反应器处理2,3-二甲基苯胺废水,结果表明,缺氧折流板反应器具有厌氧滤池和厌氧折流板反应器的优点,当水力停留时间为10.5h(缺氧5.5h,好氧5h)时,系统去除率可达89.7%。  相似文献   

7.
在20℃下连续运行厌氧膨胀颗粒污泥床(EGSB)反应器,对其处理模拟啤酒废水的工艺运行、污泥特性及微生物种群结构进行研究,结果表明:(1)HRT为18h,经184d的运行,EGSB反应器的有机负荷(以COD计)可达10kg/(m^3·d),COD去除率为85%以上,去除1kg COD可产沼气0.58m^3;  相似文献   

8.
王五洲  汤兵  韩伟 《广东化工》2006,33(2):35-38
本课题通过对比试验对生物除磷的电场强化作用及其规律进行了初步研究,结果表明,在试验条件下(电流密度:i=0.04-0.08mA/cm2),无论那个反应时段(厌氧段、好氧段)施加电场,对提高、稳定生物除磷效率都有积极的作用;对比研究发现,在相同的电流密度下,好氧段电场强化对除磷效果的促进作用更明显,在最佳工况(好氧段强化,i=0.08mA/cm2),电场强化反应器TP平均去除率高达92%,比对照组普通生物反应器高出15%。另外,试验分析了剩余污泥的含磷量,数据显示,电场强化生物反应器剩余污泥含磷率达5.04%(干重),比对照组普通生物反应器高0.68%,进一步表明了电场可强化活性污泥的超量吸磷能力。  相似文献   

9.
通过比较CSRT(连续搅拌式)好氧反应器和新型固定-流化复合厌氧反应器研究了偶氮染料废水处理的效果和特点。研究中采用固定-流化复合厌氧水解+好氧生物工艺对偶氮染料废水进行处理,并取各对照水样做光谱分析,试验者还对新型复合厌氧反应器运行的影响因素进行了研究。研究结果表明,偶氮染料废水直接好氧处理,去除率只有5%左右,直接厌氧水解处理,染料平均降解率60%。水解出水经好氧降解,染料还能降解65%~70%;新型固定-流化复合厌氧反应器达到其设计目标,满足厌氧水解工艺发展的要求,有较好的实用价值。  相似文献   

10.
《广东化工》2021,48(3)
IC厌氧反应器属于第三代高效厌氧反应器,近年来受到广泛关注及研究。本文笔者以IC厌氧反应器在某酸奶企业中的实际运用为例,详细介绍了该工程的相关设计、运行参数。实际运行效果表明,采用IC厌氧反应器COD_(cr)去除率可达85%以上。该项目的成功运行对今后类似工程选用IC厌氧反应器具有一定的参考意义。  相似文献   

11.
考察了曝气量、进水C/N比(COD/TN)及进水氮、磷浓度对序批式移动床生物膜反应器(SBMBBR)脱氮除磷效果的影响,分析了该复合生物系统的污染物去除特性。实验结果表明,反应器脱氮主要是基于好氧段发生的同时硝化反硝化(SND)作用实现的,而除磷是基于常规生物除磷和反硝化除磷过程而完成;在保持载体良好流化状态的前提下,反应器硝化效果和TP去除受曝气量变化影响不大,反硝化效果随曝气量的减小而改善;采用厌氧/好氧序批式运行方式,能够使进水中的有机物被反硝化聚磷菌优先利用,实现一碳两用,节省了脱氮对外部碳源的需要,在进水C/N为2.8~4.0时能获得良好的硝化、反硝化和TP去除效果;随着进水氮、磷浓度的提高,反应器除磷效果相对稳定,脱氮效果变差,最大氮、磷去除负荷分别达到0.17 kg TN·m-3·d-1和0.06 kg TP·m-3·d-1。  相似文献   

12.
在上流式污泥床好氧颗粒污泥反应器中,以厌氧颗粒污泥为接种泥.采用人工配制的模拟废水为进水的条件下,成功培养出具有同步脱氮除磷的好氧颗粒污泥。颗粒污泥粒径在0.5~2mm,颗粒污泥沉淀速度在29~58m/h。MLSS为3077---4103mg/L。当COD的进水容积负荷为4.8kg/(m3·d)时,去除率高达96%以上。氨氮进水在160mg/L时,去除率达97%以上,出水氨氮在5mg/L以下。对总磷的去除率在22%-37%。主要是因为亚硝态氮浓度、COD/TN比和TN/TP比等对聚磷菌除磷有影响。  相似文献   

13.
复合式膜生物反应器强化脱氮除磷的实验研究   总被引:6,自引:1,他引:6  
在传统好氧膜生物反应器(MBR)的基础上,结合厌氧/缺氧/好氧(A2/O)工艺开发了复合式A2/O膜生物反应器,并对其处理小区生活污水中的氮、磷等污染物的特性进行了研究。实验表明:在各自合适的条件下复合式A2/O膜生物反应器可保证化学需氧量(COD)的平均去除率达到90.17%,NH4+-N的去除率可达到92.32%,总氮(TN)平均去除率可达到72%,而总磷(TP)的平均去除率达到71.23%。  相似文献   

14.
双污泥-诱导结晶工艺除磷脱氮试验研究   总被引:3,自引:2,他引:1       下载免费PDF全文
史静  吕锡武  吴义锋 《化工学报》2010,61(5):1255-1261
针对传统污水处理脱氮除磷工艺碳源不足、聚磷菌与硝化菌泥龄矛盾、磷资源无法有效回收利用等问题,开发出"双污泥-诱导结晶"新型工艺,对其去除有机物和脱氮除磷性能进行了考察和分析。结果表明:当进水COD为152~237mg.L-1,TP为3.92~7.68mg.L-1,TN为31.3~50.5mg.L-1,C/N比约为3.91~5.21时,COD、TN和TP平均去除率分别为93.2%、71.2%和95.7%。厌氧段COD去除量约占系统COD去除总量的85.9%。TN的去除主要由缺氧池承担,厌氧池、硝化池、缺氧池、后置曝气池TN去除量约占系统TN去除总量的31.7%、11.4%、54.9%和2.0%。结晶在除磷过程中起着主要作用,结晶除磷量平均约占总除磷量的81.5%。双污泥工艺在系统中的主要作用为辅助化学除磷和脱氮。侧流比是保证系统稳定运行的关键参数。后置曝气池对超越污泥中COD和氨氮的去除有重要作用。  相似文献   

15.
The objective of this study was to develop an integrated process for simultaneous removal of carbon, nitrogen and phosphorus from industrial wastewaters. The process consisted of a-two step anaerobic digestion reactor, for carbon removal, coupled with a sequencing batch reactor (SBR) for nutrient removal. In the proposed process, carbon is eliminated into biogas by anaerobic digestion: acidogenesis and methanogenesis. The volatile fatty acids (VFA) produced during the first step of anaerobic digestion can be used as electron donors for both dephosphatation and denitrification. In the third reactor (SBR) dephosphatation and nitrification are induced through the application of an anaerobic–aerobic cycle. This paper describes the first trials and experiments on the SBR and a period of 210 days during which the SBR was connected to the acidogenic and methanogenic reactors. It was shown that nitrification of ammonia took place in the SBR reactor, during the aerobic phase. Furthermore, denitrification and VFA production were achieved together in the acidogenic reactor, when the efflux of nitrates from the SBR reactor was added to the first reactor influx. The proposed process was fed with a synthetic industrial wastewater, the composition of which was: total organic carbon (TOC)=2200 mg dm−3, total Kjeldahl nitrogen (TKN)=86 mg dm−3, phosphorus under phosphate form (P-PO4)=20 mg dm−3. In these conditions, removals of carbon, nitrogen and phosphorus were 98%, 78% and 95% respectively. The results show that the combination of the two-step anaerobic digestion reactor and an SBR reactor is effective for simultaneous carbon, nitrogen and phosphorus removal. Reactor arrangements enabled zones of bacterial populations to exist. Complete denitrification occurred in the acidogenic reactor and hence the anaerobic activity was not reduced or inhibited by the presence of nitrate, thus allowing high TOC removal. Stable phosphorus release and phosphorus uptake took place in the SBR after coupling of the three reactors. A fast-settling compact sludge was generated in the SBR with the operational conditions applied, thus giving good separation of supernatant fluid. The benefits from this process are the saving of (i) an external carbon source for denitrification and phosphorus removal, (ii) a reactor for the denitrification step. © 1998 Society of Chemical Industry  相似文献   

16.
A~2/O工艺强化反硝化除磷控制策略研究   总被引:1,自引:0,他引:1  
在传统A2/O工艺的基础上,通过设立预缺氧区(即建立A-A2/O工艺)、外加碳源等手段,强化A2/O工艺处理低C/N生活污水的脱氮除磷能力。试验结果表明,经过强化后的A2/O反应器对COD、TN及TP去除效果良好,COD、TN及TP的去除率分别为92%、98%、85%。系统表现出明显的反硝化除磷现象,缺氧区除磷量占总除磷量的17.18%。反硝化除磷现象的产生降低了碳源缺乏对A2/O工艺脱氮除磷性能的影响,提高碳源的利用效率。为采用A2/O工艺处理低C/N生活污水的污水处理厂提供理论依据。  相似文献   

17.
ANAMMOX反应器快速启动及对反硝化聚磷的影响研究   总被引:1,自引:0,他引:1  
硝化菌的生长快于厌氧氨氧化菌,通过培育硝化生物膜,利用硝化菌的基质多样性和代谢多样性,可使生物膜由催化硝化反应过渡到催化厌氧氨氧化反应,加速ANAMMOX反应器的启动。经过2个月的运行,成功地启动了ANAMMOX反应器,而且反应器运行性能稳定。将厌氧氨氧化引入反硝化聚磷系统中,试验结果表明,在COD和TP的去除率保持基本不变的情况下,NH4+-N的去除率从23%上升到87%,TN的去除率从88%提高到93%,出水NH4+-N和NO2--N的质量浓度均低于2mg/L。  相似文献   

18.
为了提高脱氮除磷的效率,采用序批式生物反应器(SBR)工艺处理模拟生活污水,考察了不同温度下N/P、污泥龄(SRT)对厌氧/好氧/缺氧序批式生物反应器(AOA-SBR)工艺同步脱氮除磷效能的影响。结果表明:当温度为10 ℃、N/P为2~3、SRT为20 d时,NH4+-N、TN和TP去除率分别为78%、69%和56%,污泥产率YS为0.339 kgSS/(kgBOD5),污泥含磷率PC为4.68%。当温度为25 ℃、N/P为3~5、SRT为15 d时,NH4+-N、TN和TP的去除率分别为88%、83%和91%,污泥产率YS为0.253 kgSS/(kgBOD5),污泥含磷率PC为6.35%。当温度为35 ℃、N/P为5~7、SRT为10 d时,NH4+-N、TN和TP去除率分别为80%、66%和73%,污泥产率YS为0.225 kgSS/(kgBOD5),污泥含磷率PC为7.42%。污泥产率YS随着温度和污泥龄的增加而降低,通过调节温度和污泥龄能够实现污泥减量。  相似文献   

19.
In this study, the performance of a sequencing batch biofilm reactor (SBBR) for removal of nitrogen and phosphorus from swine wastewater was evaluated. The replacement rate of wastewater was set at 12.5%throughout the exper-iment. The anaerobic and aerobic times were 3 h and 7 h, respectively, and the dissolved oxygen concentration of the aerobic phase was about 3.95 mg·L?1. The SBBR process demonstrated good performance in treating swine wastewater. The percentage removal of total chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) was 98.2%, 95.7%, 95.6%, and 96.2%at effluent concentrations of COD 85.6 mg·L?1, NH4+-N 35.22 mg·L?1, TN 44.64 mg·L?1, and TP 1.13 mg·L?1, respectively. Simultaneous nitrification and denitrification phenomenon was observed. Further improvement in removal efficiency of NH4+-N and TN occurred at COD/TN ratio of 11:1, with effluent concentrations at NH4+-N 18.5 mg·L?1 and TN 34 mg·L?1, while no such improvement in COD and TP removal was found. Microbial electron microscopy analysis showed that the fil er surface was covered with a thick biofilm, forming an anaerobic–aerobic microenvironment and facilitating the removal of nitrogen, phosphorus and organic matters. A long-term experiment (15 weeks) showed that stable removal efficiency for N and P could be achieved in the SBBR system.  相似文献   

20.
曹亚丽  王霞  胡凯  孙杏  侯克锁 《净水技术》2022,41(2):58-62,86
水力停留时间(HRT)是影响AAO工艺脱氮除磷效率的重要因素.采用改良型AAO-MBR工艺处理某农村生活污水,考察了夏季时HRT对处理装置出水效果的影响.试验结果表明,该工艺对低浓度农村生活污水中CODCr、氨氮的去除效果较稳定,平均去除率分别为69.50%、98.90%.TN去除率为26.50%~56.60%,随厌氧...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号