首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In agricultural areas, nitrate (NO3-) is a common groundwater pollutant as a result of extensive fertilizer application. At elevated concentrations, NO3- consumption causes methemoglobinemia in infants and has been linked to several cancers; therefore, its removal from groundwater is important. The addition of hydrogen gas (H2) via gas-permeable membranes has been shown to stimulate denitrification in a laboratory-scale reactor. This research, using large columns packed with aquifer material to which a simulated groundwater was fed, was conducted to further identify the conditions required for the use of membrane-delivered H2 in situ. In this study, we show that this novel technology was capable of treating highly contaminated (25 mg/L NO3- -N) and oxygenated (5.5mg/L dissolved oxygen) water, but that nutrient addition and gas pressure adjustment was required. Complete NO3- reduction was possible without the accumulation of either NO2- or N2O when the H2 lumen pressure was increased to 17 psi and phosphate was added to the groundwater. The total organic carbon content of the effluent, 110 cm downgradient of H2 addition, did not increase. The results from these experiments demonstrate that this technology can be optimized to provide effective NO3- removal in even challenging field applications.  相似文献   

2.
Electrocatalytic reduction of nitrate in water   总被引:1,自引:0,他引:1  
Peel JW  Reddy KJ  Sullivan BP  Bowen JM 《Water research》2003,37(10):2512-2519
Nitrate (NO(3)(-)) contamination of groundwater is a common problem throughout intensive agricultural areas (nonpoint source pollution). Current processes (e.g., ion exchange, membrane separation) for NO(3)(-) removal have various disadvantages. The objective of this study was to evaluate an electrocatalytic reduction process to selectively remove NO(3)(-) from groundwater associated with small agricultural communities. A commercially available ELAT (E-Tek Inc., Natick, MA) carbon cloth with a 30% surface coated Rh (rhodium) (1microg x cm(-1)) was tested at an applied potential of -1.5 V versus standard calomel electrode (SCE) with a Pt auxiliary electrode. Electrocatalytic reduction process (electrolysis) of NO(3)(-) was tested with cyclic voltammetry (CV) in samples containing NO(3)(-) and 0.1M NaClO(4)(-). Nitrate and NO(2)(-) concentrations in test solutions and groundwater samples were analyzed by ion chromatography (IC). The presence of Rh on the carbon cloth surface resulted in current increase of 36% over uncoated carbon cloths. The electrocatalysis experiments using Rh coated carbon cloth resulted in reduction of NO(3)(-) and NO(2)(-) on a timescale of minutes. Nitrite is produced as a product, but is rapidly consumed upon further electrolysis. Field groundwater samples subjected to electrocatalysis experiments, without the addition of NaClO(4)(-) electrolyte, also exhibited removal of NO(3)(-) on a timescale of minutes. Overall, results suggest that at an applied potential of -1.5 V with respect to SCE, Rh coated carbon cloth can reduce NO(3)(-) concentrations in field groundwater samples from 73 to 39 mg/L (16.58 to 8.82 mg/L as N) on a timescale range of 40-60 min. The electrocatalytic reduction process described in this study may prove useful for removing NO(3)(-) and NO(2)(-) from groundwater associated with nonpoint source pollution.  相似文献   

3.
Lee M  Kang H  Do W 《Water research》2005,39(1):139-146
Surfactant-enhanced in situ flushing was performed to remediate soil and groundwater at a diesel contaminated area, which had been used as a military vehicle repair area in Korea for 45 years. A pilot-scale site (4 m x 4 m x 4 m) was selected within the contaminated area for in situ flushing; the selected site was composed of heterogeneous sandy and silt-sandy soils, with an average hydraulic conductivity (K) of 2.0 x 10(-4)cm/s. Two percent of sorbitan monooleate (POE 20) was mixed with uncontaminated groundwater and five pore volumes of solution (three pore volumes of surfactant solution and two pore volumes of groundwater alone) were flushed to remove diesel from the site. The effluent TPH (total petroleum hydrocarbon) concentration with surfactant solution flushing increased to 1761 mg/L, which was over 200 times higher than the average concentration with only groundwater flushing. A total of 48 kg of TPH (about 88% of the initial TPH) was removed from the pilot site with five pore volumes of 2% sorbitan monooleate solution flushing; this total was more than 75 times the amount that was removed when flushing with water alone (less than 640 g). All of the extracted solution was treated by means of a chemical treatment process, which included the use of a dissolved air flotation system to lower the concentration of solution below 5mg/L and the treated solution was then disposed of in a nearby sewage drain.  相似文献   

4.
Gupta AB  Gupta SK 《Water research》2001,35(7):1714-1722
High strength domestic wastewater discharges after no/partial treatment through sewage treatment plants or septic tank seepage field systems have resulted in a large build-up of groundwater nitrates in Rajasthan, India. The groundwater table is very deep and nitrate concentrations of 500-750 mg/l (113-169 as NO3(-)-N) are commonly found. A novel biofilm in a 3-stage lab-scale rotating biological contactor (RBC) was developed by the incorporation of a sulphur oxidising bacterium Thiosphaera pantotropha which exhibited high simultaneous removal of carbon and nitrogen in fully aerobic conditions. T. pantotropha has been shown to be capable of simultaneous heterotrophic nitrification and aerobic denitrification thereby helping the steps of carbon oxidation, nitrification and denitrification to be carried out concurrently. The first stage having T. pantotropha dominated biofilm showed high carbon and NH4(+)-N removal rates of 8.7-25.9 g COD/m2 d and 0.81-1.85 g N/m2 d for the corresponding loadings of 10.0-32.0 g COD/m2 d and 1.0-3.35 g N/m2 d. The ratio of carbon removed to nitrogen removed was close to 12.0. The nitrification rate increased from 0.81 to 1.8 g N/m2 d with the increasing nitrogen loading rates despite a high simultaneous organic loading rate. However, it fell to 1.53 g N/m2 d at a high load of 3.35 g N/m2 d and 32 g COD/m2 d showing a possible inhibition of the process. A simultaneous 44-63% removal of nitrogen was also achieved without any significant NO2(-)-N or NO3(-)-N build-up. The second and third stages, almost devoid of any organic carbon, acted only as autotrophic nitrification units, converting the NH4(+)-N from stage 1 to nitrite and nitrate. Such a system would not need a separate carbon oxidation step to increase nitrification rates and no external carbon source for denitrification. The alkalinity compensation during denitrification for that destroyed in nitrification may also result in a high economy.  相似文献   

5.
Hydrogenotrophic denitrification in a microporous membrane bioreactor   总被引:6,自引:0,他引:6  
Mansell BO  Schroeder ED 《Water research》2002,36(19):4683-4690
Hydrogenotrophic denitrification of nitrate contaminated groundwater in a bench-scale microporous membrane bioreactor has been investigated. To prevent microbial contamination of the effluent from the reactor the nitrate-laden water treated was separated from the denitrifying culture with a 0.02 microm pore diameter membrane. Equal pressure was maintained across the membrane and nitrate was removed by molecular diffusion through the membrane and into the denitrifying culture. The system was operated with a hydrogenotrophic denitrification culture to circumvent the addition of an organic substrate to the water. Removal efficiencies ranging from 96% to 92% were achieved at influent concentrations ranging from 20 to 40 mg/L NO3(-)-N. The flux values achieved in this study were 2.7-5.3 g NO3-N m 2d(-1). The microporous membrane served as an effective barrier for preventing microbial contamination of the product water as evidenced by the effluent heterotrophic plate count of 9 (+/- 3.5) CFU/mL. The hydrogenotrophic culture was analyzed using available 16S and 23S rRNA-targeted oligonucleotide probes. It was determined that the enrichment process selected for organisms belonging to the beta subclass of Proteobacteria. Further analysis of the hydrogenotrophic culture indicated that the organisms may belong to the beta-3 subgroup of Proteobacteria and have yet to be identified as hydrogenotrophic denitrifiers.  相似文献   

6.
Perchlorate removal in sand and plastic media bioreactors   总被引:3,自引:1,他引:3  
The treatment of perchlorate-contaminated groundwater was examined using two side-by-side pilot-scale fixed-bed bioreactors packed with sand or plastic media, and bioaugmented with the perchlorate-degrading bacterium Dechlorosoma sp. KJ. Groundwater containing perchlorate (77microg/L), nitrate (4mg-NO(3)/L), and dissolved oxygen (7.5mg/L) was amended with a carbon source (acetic acid) and nutrients (ammonium phosphate). Perchlorate was completely removed (<4microg/L) in the sand medium bioreactor at flow rates of 0.063-0.126L/s (1-2gpm or hydraulic loading rate of 0.34-0.68L/m(2)s) and in the plastic medium reactor at flow rates of <0.063L/s. Acetate in the sand reactor was removed from 43+/-8 to 13+/-8mg/L (after day 100), and nitrate was completely removed in the reactor (except day 159). A regular (weekly) backwashing cycle was necessary to achieve consistent reactor performance and avoid short-circuiting in the reactors. For example, the sand reactor detention time was 18min (hydraulic loading rate of 0.68L/m(2)s) immediately after backwashing, but it decreased to only 10min 1 week later. In the plastic medium bioreactor, the relative changes in detention time due to backwashing were smaller, typically changing from 60min before backwashing to 70min after backwashing. We found that detention times necessary for complete perchlorate removal were more typical of those expected for mixed cultures (10-18min) than those for the pure culture (<1min) reported in our previous laboratory studies. Analysis of intra-column perchlorate profiles revealed that there was simultaneous removal of dissolved oxygen, nitrate, and perchlorate, and that oxygen and nitrate removal was always complete prior to complete perchlorate removal. This study demonstrated for the first time in a pilot-scale system, that with regular backwashing cycles, fixed-bed bioreactors could be used to remove perchlorate in groundwater to a suitable level for drinking water.  相似文献   

7.
In this paper, a new method for removal of nitrate from groundwater, in which elemental sulfur-based denitrification (autotrophic denitrification) and membrane separation are combined, is proposed. By using a membrane, autotrophic denitrifiers, whose growth rate is considerably low, can be kept at a high concentration. The performance of the proposed process was examined through a long-term experiment in the laboratory using synthetic feed water. A rotating membrane disk module equipped with UF membrane (750,000 Da) was used in this study. Complete removal of nitrate (25 mg N/L) was achieved under the conditions of a biomass concentration of about 1000 mg protein/L and HRT of 160 min. Dissolved oxygen concentration and sulfur/biomass ratio in the membrane chamber were found to be the key factors in maintenance of high-process performance. Deterioration in membrane permeability was insignificant. It was found that membrane filtration could be continued with a water flux of 0.5 m3/m2/day for about 100 days without any chemical membrane cleaning. The proposed process, however, caused a slight increase in assimilable organic carbon. Sulfide was not detected in the denitrified water.  相似文献   

8.
Li XY  Chu HP 《Water research》2003,37(19):4781-4791
A laboratory membrane bioreactor (MBR) using a submerged polyethylene hollow-fibre membrane module with a pore size of 0.4 microm and a total surface area of 0.2 m2 was used for treating a raw water supply slightly polluted by domestic sewage. The feeding influent had a total organic carbon (TOC) level of 3-5 mg/L and an ammonia nitrogen (NH(3)-N) concentration of 3-4 mg/L. The MBR ran continuously for more than 500 days, with a hydraulic retention time (HRT) as short as 1h or less. Sufficient organic degradation and complete nitrification were achieved in the MBR effluent, which normally had a TOC of less than 2 mg/L and a NH(3)-N of lower than 0.2 mg/L. The process was also highly effective for eliminating conventional water impurities, as demonstrated by decreases in turbidity from 4.50+/-1.11 to 0.08+/-0.03 NTU, in total coliforms from 10(5)/mL to less than 5/mL and in UV(254) absorbance from 0.098+/-0.019 to 0.036+/-0.007 cm(-1). With the MBR treatment, the 3-day trihalomethane formation potential (THMFP) was significantly reduced from 239.5+/-43.8 to 60.4+/-23.1 microg/L. The initial chlorine demand for disinfection decreased from 22.3+/-5.1 to 0.5+/-0. 1mg/L. The biostability of the effluent improved considerably as the assimilable organic carbon (AOC) decreased from 134.5+/-52.7 to 25.3+/-19.9 microg/L. All of these water quality parameters show the superior quality of the MBR-treated water, which was comparable to or even better than the local tap water. Molecular size distribution analysis and the hydrophobic characterisation of the MBR effluent, in comparison to the filtered liquor from the bioreactor, suggest that the MBR had an enhanced filtration mechanism. A sludge layer on the membrane surface could have functioned as an additional barrier to the passage of typical THM precursors, such as large organic molecules and hydrophobic compounds. These results indicate that the MBR with a short HRT could be developed as an effective biological water treatment process to address the urgent need of many developing countries that are plagued by the serious contamination of surface water resources.  相似文献   

9.
Malaysia contains elevated levels of iron in shallow groundwater in the range of 3–7 mg Fe/L compared to the USEPA safe limit of 0.3 mg Fe/L. Air Kelantan Sdn Bhd in Malaysia uses the ‘River Bank Filtration’ (RBF) technology to harvest hyporheic water. The RBF treatment removes the turbidity of the river water through the river bed acting as a filter, but is unable to remove the Fe from the harvested water. This work proposes a technology to reduce Fe concentration in the extracted water using granular activated carbon in a laboratory‐scale rotating packed bed contactor (RPBC). The Taguchi method was used for optimizing the operating conditions for the adsorption of Fe onto activated carbon in the RPBC system. Taguchi optimization results showed that a removal efficiency of 87% Fe from a 50 mg Fe/L concentration could be achieved by a RPBC at an initial pH of 6.5, a feed rate of 40 L/h, a rotating speed of 1600 rpm and a packing density of 357 kg/m3.  相似文献   

10.
Nitrification was developed within a biological filter to simultaneously remove biodegradable organic matter (BOM) and residual ammonia added to control bromate formation during the ozonation of drinking water. Testing was performed at pilot-scale using three filters containing sand and anthracite filter media. BOM formed during ozonation (e.g., assimilable organic carbon (396-572 microg/L), formaldehyde (11-20 microg/L), and oxalate (83-145 microg/L)) was up to 70% removed through biofiltration. Dechlorinated backwash water was required to develop the nitrifying bacteria needed to convert the residual ammonia (0.1-0.5 mg/L NH(3)-N) to nitrite and then to nitrate. Chlorinated backwash water resulted in biofiltration without nitrification. Deep-bed filtration (empty-bed contact time (EBCT) = 8.3 min) did not enhance the development of nitrification when compared with shallow-bed filtration (EBCT = 3.2 min). Variable filtration rates between 4.8 and 14.6 m/h (2 and 6 gpm/sf) had minimal impact on BOM removal. However, conversion of ammonia to nitrite was reduced by 60% when increasing the filtration rate from 4.8 to 14.6 m/h. The results provide drinking water utilities practicing ozonation with a cost-effective alternative to remove the residual ammonia added for bromate control.  相似文献   

11.
Uranium removal from contaminated groundwater by synthetic resins   总被引:1,自引:0,他引:1  
Synthetic resins are shown to be effective in removing uranium from contaminated groundwater. Batch and field column tests showed that strong-base anion-exchange resins were more effective in removing uranium from both near-neutral-pH (6.5)- and high-pH (8)-low-nitrate-containing groundwaters, than metal-chelating resins, which removed more uranium from acidic-pH (5)-high-nitrate-containing groundwater from the Oak Ridge Reservation (ORR) Y-12 S-3 Ponds area in Tennessee, USA. Dowex 1-X8 and Purolite A-520E anion-exchange resins removed more uranium from high-pH (8)-low-nitrate-containing synthetic groundwater in batch tests than metal-chelating resins. The Dowex 21K anion-exchange resin achieved a cumulative loading capacity of 49.8 mg g(-1) before breakthrough in a field column test using near-neutral-pH (6.5)-low-nitrate-containing groundwater. However, in an acidic-pH (5)-high-nitrate-containing groundwater, metal-chelating resins Diphonix and Chelex-100 removed more uranium than anion-exchange resins. In 15 m L of acidic-pH (5)-high-nitrate-containing groundwater spiked with 20 mg L(-1) uranium, the uranium concentrations ranged from 0.95 mg L(-1) at 1-h equilibrium to 0.08 mg L(-1) at 24-h equilibrium for Diphonix and 0.17 mg L(-1) at 1-h equilibrium to 0.03 mg L(-1) at 24-h equilibrium for Chelex-100. Chelex-100 removed more uranium in the first 10 min in the 100mL of acidic-(pH 5)-high-nitrate-containing groundwater ( approximately 5 mg L(-1) uranium); however, after 10 min, Diphonix equaled or out-performed Chelex-100. This study presents an improved understanding of the selectivity and sorption kenetics of a range of ion-exchange resins that remove uranium from both low- and high-nitrate-containing groundwaters with varying pHs.  相似文献   

12.
McAdam EJ  Judd SJ 《Water research》2007,41(18):4242-4250
Interest is growing in developing membrane bioreactors (MBRs) to replace ion exchange for nitrate removal from drinking water. However, few published studies have successfully managed to retain exogenous or biologically derived carbon. This study determined an optimum C:N by substrate breakthrough rather than maximum nitrate removal. By dosing 相似文献   

13.
Arsenic, nitrate, chloride, and bromide concentrations in the Gulf Coast Aquifer of south-central Texas, USA, were compiled, mapped, and evaluated in the context of local land use and geology. Agriculture and oil production are predominant land uses and potential sources of groundwater contamination in the study area. Data were compiled from 69 wells with a median depth of 160.5 v m. Eight observations surpassed the 44.3 v mg/L standard for nitrate (10 v mg/L NO 3 -N), and 24 observations exceeded the 10 v µg/L standard for arsenic. There was a statistically significant, inverse correlation between nitrate and well depth, and a direct correlation between nitrate and arsenic. Arsenic concentrations were significantly higher in a uranium-bearing sand formation compared to other formations in the study area. Chloride concentrations were also high relative to the (secondary) drinking water standard (250 v mg/L), with a median of 342 v mg/L and maximum of 6840 v mg/L. Most chloride/bromide ratios were near 300, but there were four significantly lower values, consistent with oilfield brine or evaporite dissolution. Results of this study suggest that (1) geology exerts a major control on arsenic concentrations in groundwater, (2) agricultural activity contributes substantially to nitrate and chloride and, to a lesser extent, arsenic concentrations in groundwater, and (3) oilfield brine has locally impacted groundwater in the study area.  相似文献   

14.
Substantial questions remain about the time required for groundwater nitrate to be reduced below 10 mg L(-1) following establishment of vegetated riparian buffers. The objective of this study was to document changes in groundwater nitrate-nitrogen (NO3-N) concentrations that occurred within a few years of planting a riparian buffer. In 2000 and 2001 a buffer was planted adjacent to a first-order stream in the deep loess region of western Iowa with strips of walnut and cottonwood trees, alfalfa and brome grass, and switch grass. Non-parametric statistics showed significant declines in NO3-N concentrations in shallow groundwater following buffer establishment, especially mid 2003 and later. The dissolved oxygen generally was >5 mg L(-1) beneath the buffer, and neither NO3-N nor DO changed significantly under a non-buffered control area. These short-term changes in groundwater NO3-N provide evidence that vegetated riparian buffers may yield local water-quality benefits within a few years of planting.  相似文献   

15.
Although nitrate is recognized as the most common groundwater contaminant due to growing anthropogenic sources, such as agriculture in particular, its adverse effects on human and animal health are debatable. The current issue, however, is to control and reduce nitrate contamination with regards to the long residence time of groundwater within aquifers. Denitrification has recently been recognized for its ability to reduce high nitrate concentrations in groundwater. The Kakamigahara groundwater basin, Gifu prefecture, Japan, witnessed rising levels of nitrate (>12 mg/l NO(3)-N) originating from agricultural sources. Chemical analyses for the determination of major constituents of groundwater and delta(15)N of residual nitrate were performed on representative groundwater samples in order to fulfill two main objectives. One is to investigate the current situation of nitrate groundwater pollution. The second objective is to determine whether the denitrification is a potential natural mechanism, which eliminates nitrate pollution in the Kakamigahara aquifer. Agricultural nitrate contamination of groundwater was obvious from characteristically high concentrations of Ca(2+), Mg(2+), NO(3)(-) and SO(4)(2-). High nitrate concentrations were found on the eastern side of the basin in association with vegetable cultivation fields, and decreased gradually towards the west of the basin along the direction of groundwater flow. The decrease of nitrate concentration was conveniently coupled with increase of HCO(3)(-) (the heterotrophic denitrification product), pH and delta(15)N of residual nitrate (due to isotopic fractionation) from east to west. Therefore, denitrification in situ is continuously removing nitrate from the Kakamigahara groundwater system.  相似文献   

16.
Chen YX  Zhang Y  Chen GH 《Water research》2003,37(10):2489-2495
This study focused on the appropriate catalyst preparation and operating conditions for maximizing catalytic reduction efficiency of nitrate into nitrogen gas from groundwater. Batch experiments were conducted with prepared Pd and/or Cu catalysts with hydrogen gas supplied under specific operating conditions. It has been found that Pd-Cu combined catalysts prepared at a mass ratio of 4:1 can maximize the nitrate reduction into nitrogen gas. With an increase in the quantity of the catalysts, both nitrite intermediates and ammonia can be kept at a low level. It has also been found that the catalytic activity is mainly affected by the mass ratio of hydrogen gas to nitrate nitrogen, and hydrogen gas gauge pressure. Appropriate operating values of H(2)/NO(3)-N ratio, hydrogen gas gauge pressure, pH, and initial nitrate concentration have been determined to be 44.6g H(2)/g N, 0.15 atm, 5.2 (-), 100 mg x L(-1) for maximizing the catalytic reduction of nitrate from groundwater.  相似文献   

17.
Drinking water denitrification using a membrane bioreactor   总被引:7,自引:0,他引:7  
Ergas SJ  Rheinheimer DE 《Water research》2004,38(14-15):3225-3232
A membrane bioreactor (MBR) was investigated for denitrification of nitrate (NO3(-)) contaminated drinking water. In the MBR, NO3(-) contaminated water flows through the lumen of tubular microporous membranes and NO3(-) diffuses through the membrane pores. Denitrification takes place on the shell side of the membranes, creating a driving force for mass transfer. The microporous membranes provide a high NO3(-) permeability, while separating the treated water from the microbial process, reducing carryover of organic carbon and sloughed biomass to the product water. Specific objectives of this research were to develop a model for NO3(-) mass transfer in the MBR, investigate the effect of shell and lumen velocity on NO3(-) mass transfer and investigate the effects of NO3(-) and organic carbon loading on denitrification rate and product water quality. A mathematical model of NO3(-) mass transfer was developed, which fit abiotic mass transfer data well. Correlations of dimensionless parameters were found to underestimate the overall NO3(-) mass transfer coefficient by 30-45%. The MBR achieved over 99% NO3(-) removal at an influent concentration of 200 mg NO3(-)-NL(-1). The average NO3- flux to the biomass was 6.1g NO3(-)-Nm(-2)d(-1). Low effluent turbidity was achieved; however, approximately 8% of the added methanol partitioned into the product water.  相似文献   

18.
The performance of a submerged moving bed biofilm reactor (MBBR) for the denitrification of seawater in a 3.25 million closed circuit mesocosm was investigated at pilot scale, using methanol as a carbon source at various C/N ratios. Nitrate accumulation in closed systems where water changes are expensive and problematic may cause toxicity problems to marine life. Seawater was pretreated in a recirculated fixed bed to remove oxygen prior to the denitrification step. The 110l MBBR was partly filled (25%) with spherical positively buoyant polyethylene carriers with an effective surface area of approximately 100 m2 m(-3), which represents 35% of the total surface area. Carriers were maintained submerged by a conical grid and circulated by the downflow jet of an eductor. The MBBR mixing system was designed to prevent dead mixing zones and carrier fouling to avoid sulfate reduction while treating seawater containing as high as 2150 mg SO4-Sl(-1). NO3-N reduction from 53 to as low as 1.7+/-0.7 mg l(-1) and a maximum denitrification rate of 17.7+/-1.4 g Nm(-2) d(-1) were achieved at 4.2-4.3 applied COD/N (w/w) ratio. Methanol consumption corresponded to denitrification stoichiometric values, indicating the absence of sulfate reduction. Denitrification rates and effluent residual dissolved organic carbon were proportional to the C/N ratio. Such reactors could be scaled up in closed systems where water changes must be minimized.  相似文献   

19.
SMSBR去除焦化废水中有机物及氮的特性   总被引:12,自引:3,他引:12  
选用一体化膜—序批式生物反应器 (SubmergedMembraneSequencingBatchReac tor ,简称SMSBR)处理焦化废水 ,考察了能否通过膜分离的强化作用提高生物处理系统对焦化废水的处理效果 ,使出水COD达到新的排放标准 ( <10 0mg/L) ,并提高脱氮效率。研究结果表明 :在HRT为 32 .7h ,平均COD容积负荷为 0 .4 5kg/ (m3·d)的条件下 ,出水COD可以稳定在 10 0mg/L以下 (平均为 86.4mg/L) ;要使COD达到新的排放标准 ,进水COD容积负荷应低于 0 .67kg/ (m3·d) (该负荷下出水COD在 10 0mg/L上下波动 ,平均为 10 6.3mg/L) ;好氧段存在明显的反硝化现象 ,使COD的去除得到强化 ;在保证系统温度、碱度、溶解氧和不受进水COD负荷冲击的情况下 ,出水NH3-N可低于 1mg/L ,但泥龄太长所产生的微生物代谢产物抑制了硝化反应过程中的硝酸盐细菌 ,使好氧段出水NO2 -N/NOx-N平均为 91.1% ,因此系统获得极其稳定高效的短程硝化作用 ,有利于进一步脱氮 ;按“缺氧 1—好氧—缺氧 2”方式运行时 ,若“缺氧 2”的HRT>8.4 4h ,可实现 81.34 %的反硝化率 (外加碳源 :COD/N为 2 .1g/g) ,平均TN去除率为 87.2 % ,最高达 90 .2 %。  相似文献   

20.
Poole AJ 《Water research》2004,38(14-15):3458-3464
Wool scouring effluent that had been treated with chemical flocculation and aerobic biological treatment (Sirolan CFB effluent) was tertiary treated by hydroxyl radical oxidation to remove residual organic compounds. These compounds impart a high chemical oxygen demand of 500-3000 mg/L and dark colour. However, a H2O2/UV process was found to effectively treat the majority of residual compounds, with up to 75% COD, 85% total organic carbon, and 100% removal of colour (T(480 nm)) achieved. This was despite the effluent being strongly absorbing in the UV region, with a film thickness of 0.21 mm reducing T(254 nm) by 50%. Treatment was unaffected by pH over the range 3-9. H2O2/UV treatment increased the biodegradability of the effluent (5-day biochemical oxygen demand increased from < 10 to 86 mg/L), but a combined chemical and biological process did not increase maximum COD removal or overall process efficiency. The tertiary treated effluent had a final COD in the range 125-750 mg/L, equating to a total COD removal from raw wool scour effluent of approximately 97.5%. This degree of treatment is sufficient for discharge in many, but not all, circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号