首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.
悬浮型光催化反应体系因比表面积大和传质快等优点而具有较高光催化效率,但催化剂的分离回收工艺复杂,提高了工业成本。利用膜分离技术与悬浮型反应器耦合,可较好的解决固液分离问题,提高工艺经济性,代表了悬浮型光催化反应器的发展方向。本文重点对国内悬浮型光催化-膜分离反应器的研究进展进行综述,展望了该技术的发展方向。  相似文献   

2.
(4)引入膜分离技术的反应技术 通常的甲醇合成工艺中,未反应气体需循环返回反应器,而KPT则提出将未反应气体送往膜分离器,并将气体分为富含氢气的气体,前作燃料用,后返回反应器。  相似文献   

3.
介绍了混相床-催化蒸馏组合技术的工艺流程及在某石化公司炼油型甲基叔丁基醚(MTBE)装置上的工业应用情况。工业应用结果表明:利用混相床-催化蒸馏组合技术,该装置可生成高纯度MTBE产品。经过混相床反应器醚化后,异丁烯转化率在97%以上;经过催化蒸馏塔醚化后,MTBE质量分数在97%以上、MTBE纯度[含甲基仲丁基醚(MSBE)]98%以上、硫质量分数低于13.5μg/g,满足国Ⅴ调和汽油组分需要。  相似文献   

4.
介绍光催化-膜分离耦合工艺,它是在传统光催化技术中粉末催化剂难分离回收和废水处理后水质不够理想的基础上进行研发的。总结了不同构型的光催化膜反应器的特点及其存在的局限性,并简述了新型光催化膜反应器工艺运行时需考虑的因素。分析表明悬浮型光催化膜反应器的光催化效率明显高于负载型光催化膜反应器;针对悬浮式光催化膜反应器面临的由压力驱动引起的高能量输入和膜污染问题,指出光催化与渗透气化或膜蒸馏联用工艺所具有的独特优势。认为光催化/膜分离耦合工艺在水处理领域具有重要前景,今后研究应集中在高活性光催化剂的开发、高抗氧化性和耐污染的膜制备及光催化膜反应器结构的优化上。  相似文献   

5.
催化蒸馏技术公司与英国石油公司签署一项协议,同意把它们的甲基叔丁基醚/叔戊基甲基醚技术(MTBE/TAME技术)结合在一起,以大幅度降低投资费用,且可以得到辛烷值高的烷基化物。新工艺使用英国石油公司Etherol工艺的催化剂,也使用催化蒸馏技术公司的反应器和催化蒸馏技术。Etherol催化剂完成二烯烃高选择加氢制单烯烃的反应、烯烃异构化反应和原  相似文献   

6.
介绍了MTBE的制取方法,技术经济指标,并对MTBE工艺中的反应条件、反应器型式及共沸等问题进行了初步讨论。利用蒸汽裂解抽余油及催化裂化提供的C_4为原料,采用相应的流程制取MTBE是可行的,经济的。为扩大原料来源,应开发新的技术路线。认为,降低MTBE合成工业成本的关键是降低原料消耗。以筒式反应器作为大工业生产装置中的反应器并采用加压精馏具有优越性。  相似文献   

7.
闫鹏  程易 《化工进展》2022,41(7):3446-3454
采用反应-分离集成的膜反应器进行分布式制氢,对简化工艺、降低能耗、提升技术经济性至关重要。本文采用数学模型对甲烷蒸汽重整制氢过程膜反应器进行模拟,系统分析了渗透侧操作策略、反应压力、反应温度、钯基膜性能、催化剂性能对反应器行为的影响;并以1m3/h甲烷最大程度转化为目标进行分布式制氢案例分析,详细比较膜反应器技术与“常规反应器+膜分离”工艺技术。结果表明,膜反应器在反应压力30atm(1atm=101325Pa)、反应温度500℃下操作可实现紧凑设计,比“常规反应器+膜分离”工艺技术具有明显优势,但是亟需研发更佳活性(10倍)的钯基膜和催化剂以实现显著的过程强化。模拟结果可为不同规模分布式制氢膜反应器的操作与设计及进一步的性能强化提供指导。  相似文献   

8.
当前国内炼油产能过剩,化工品如低碳烯烃及苯-甲苯-二甲苯混合物(BTX)等存在缺口,因此应推动炼油向石化的生产转变,化解过剩产能同时提高化工品供给。我国原油馏分偏重且原油重质化劣质化趋势不可逆转,因此利用重油生产低碳烯烃等化工品成为技术关键。本文介绍了重油生产低碳烯烃的催化裂解单项技术典型工艺,包括重油深度催化裂解(DCC)、催化热裂解(CPP)及重油裂解制烯烃(HCC)工艺,认为催化裂解技术的发展在于催化剂的改性与反应器型式的革新优化,下行床反应器前景更为广阔。同时,本文也介绍了从重油或原油通过加氢裂化联合催化裂解、蒸汽裂解及芳烃装置一体化生产化工品的几种国内外工艺技术及工程项目。在单项技术无法取得明显突破之前,炼化一体化生产化工品具有集约化、高效化、灵活性高及经济效益好等优势。一体化技术的重点在于重油(渣油)的深度转化,可通过渣油的加氢裂化工艺来实现。  相似文献   

9.
《化工文摘》2005,(6):6-7
美国薄膜技术研究公司(MTP)开发了一种VaporSep薄膜分离技术,可分离和回收烃类和氮气。这是一种聚合物薄膜,可选择性地分离烃类和轻质气体(例如氮气和氢气)。在液态淤浆法聚乙烯工艺中,乙烯、1-己烯和异丁烷在反应器内反应生成聚乙烯,生成的粉状聚合物含有大量未反应的单体和稀释剂。在聚合物挤压之前必须除去这些烃类。脱除烃类的最后一步是用热氮气在汽提塔(清扫塔)内脱除烃类。有些工厂用高压和低温冷凝的一般方法进行回收,只能回收一部分烃类,不能回收氮气。采用膜分离工艺可先将清扫塔顶的排气(含25%异丁烷的氮气及少量乙烯和1-己烯)经压缩和冷却后在气液分离器内回收异丁烷,排出的气体(仍含有大量异丁烷)送至第一薄膜分离段,  相似文献   

10.
膜生物反应器在含氨废水处理中的应用   总被引:1,自引:0,他引:1  
摘要:膜生物反应器是膜分离与生物反应器相结合的一种污水处理新工艺,采用此工艺,不仅废物去除率高,而且可以简化流程,节省投资。  相似文献   

11.
This paper studies the separation of an ethyl acetate–isooctane mixture by heterogeneous azeotropic distillation in a batch rectifying column. An initial list of 60 candidates was studied but only methanol and acetonitrile were obtained as potential heterogeneous entrainers. These entrainers form a low boiling heterogeneous azeotrope with isooctane. Experimental verification of the miscibility gap with isooctane was performed at 25 °C for each entrainer giving a smaller region for methanol than for acetonitrile. Feasibility of the heterogeneous azeotropic batch distillation was carried out experimentally in a laboratory batch distillation column having 44 theoretical equilibrium stages and using a high reflux ratio. Several distillate fractions were taken as a function of the temperature at the top of the column. For both methanol and acetonitrile, the main fraction was defined by the condensed vapor providing a liquid–liquid split of the isooctane/entrainer heteroazeotrope into the decanter. Ethyl acetate impurity was detected in both decanted phases, but in much lower amount when using acetonitrile as entrainer. The process with acetonitrile also resulted in a shorter operating time and higher purity and recovery yield of isooctane as the main distillate product. Pure ethyl acetate remained into the boiler at the end of each process.  相似文献   

12.
应用严格的热力学模型研究了带有侧线返回进料的氢同位素低温精馏塔的分离特性.根据氢同位素低温精馏体系的特点,以平衡级模型为基础建立了氢同位素低温精馏稳态模拟模型,确定了模型方程适宜的求解方法.塔的一股侧线出料流股经过一个平衡反应器完成平衡反应后,作为内部进料流股,与原外部进料混合后重新进入精馏塔内进行分离操作.通过对带有侧线返回进料的塔的计算模拟阐明了这一侧线流股对塔分离特性的影响.在平衡反应器内,HD部分分解为H2和D2,塔顶产品中H2的浓度增加了8.635%,塔底D2的浓度增加了11.327%.  相似文献   

13.
节能型甲醇精馏工艺研究   总被引:5,自引:1,他引:4  
提出两种节能型甲醇精馏新工艺。在改进的三塔双效精馏工艺中,加压塔的蒸汽不仅用作常压塔的热源,还同时供给预塔的再沸器。四塔双效精馏工艺在传统三塔流程中新增一个加压塔,它的蒸汽用于预塔的再沸器,新增加压塔的塔顶得到精甲醇产品,塔底排出废水。对两种新工艺进行了稳态模拟,结果表明各换热器的两侧有合适的温差,换热器可以正常工作,对3种工艺的对比表明,改进的三塔工艺比传统三塔工艺节能16.67%,四塔工艺比传统三塔工艺节能16.17%。  相似文献   

14.
An integrated reactive distillation process for biodiesel production is proposed. The reactive separation process consists of two coupled reactive distillation columns (RDCs) considering the kinetically controlled reactions of esterification of the fatty acids (FFA) and the transesterification of glycerides with methanol, respectively. The conceptual design of the reactive distillation columns was performed through the construction of reactive residue curve maps in terms of elements. The design of the esterification reactive distillation column consisted of one reactive zone loaded with Amberlyst 15 catalyst and for the transesterification reactive column two reactive zones loaded with MgO were used. Intensive simulation of the integrated reactive process considering the complex kinetic expressions and the PC-SAFT EOS was performed using the computational environment of Aspen Plus. The final integrated RD process was able to handle more than 1% wt of fatty acid contents in the vegetable oil. However, results showed that the amount of fatty acids in the vegetable oil feed plays a key role on the performance (energy cost, catalyst load, methanol flow rate) of the integrated esterification–transesterification reactive distillation process.  相似文献   

15.
具有热集成和水集成的甲醇精馏新工艺及其模拟   总被引:8,自引:1,他引:8       下载免费PDF全文
吴嘉  陈露 《化工学报》2005,56(3):477-481
提出了一种新的三塔精馏工艺用于合成甲醇的精制过程.在采用差压双效精馏实现系统内的热集成方案中,新工艺从加压精馏塔进料板上部的侧线采出中等甲醇浓度的物料作为常压精馏塔的进料,有效地平衡了两塔的分离负荷,进一步降低了双效精馏的总能耗,同时,将预精馏塔产生的盐碱类物质浓缩分离到加压塔底采出,使常压塔底出料为高纯度软水,将其循环复用为预塔萃取水,实现了系统内的工艺软水集成,不但降低了新鲜工艺软水的消耗,而且还减少了系统的废水排放量.运用计算机稳态模拟方法对传统的两塔工艺、现有的三塔双效精馏工艺和本文提出的新工艺进行了对比研究,研究结果表明:新工艺可以比两塔工艺节能49.2%,节水38.0%;比现有三塔工艺节能24.7%,节水38.0%.  相似文献   

16.
风载荷对精馏塔分离效率的影响   总被引:1,自引:1,他引:0  
洪纯芬 《化学工程》1996,24(2):14-17
以乙苯-苯乙烯精馏塔为例,探讨了风载荷对较高塔器分离效率的影响。作者统计了当地两个不同月份的风级气象资料,用曲线标绘出了乙苯-苯乙烯塔顶部苯乙烯损失量以及操作回流比随当地风级变化的实际情况,形象地说明了风载荷对高塔分离效率的影响,并在新的设计方案中,对安装方式采取了措施,增强了塔的刚度,从而提高塔板效率13%左右,而且有明显的节能效果。  相似文献   

17.
用隔离壁精馏塔萃取精馏制无水叔丁醇,在溶剂比为1.5,回流比为2∶1,叔丁醇原料进料速度为1.7 mL/min时,塔顶叔丁醇的质量分数达到99.6%;塔釜乙二醇的质量分数达到97.7%,可直接作萃取剂循环利用。用AspenPlus对该工艺和二塔萃取精馏工艺对比,结果与实验相一致,塔顶叔丁醇质量分数的相对误差为0.4%,塔釜乙二醇质量分数的相对误差1.3%。结果显示,该工艺比现有工艺省了1个塔、1个再沸器和1个冷凝器,节能27%,降低了能耗和设备投资。  相似文献   

18.
We developed a separation process that can minimize utility consumption in order to obtain normal hexane from crude raffinates for electronic-grade reagents. For the separation of normal hexane from the crude raffinate mixtures, a two-column configuration was selected. The first distillation column removes lighter constituents than normal hexane as a column top product, after which heavier constituents containing normal hexane are put into the middle of the second distillation column. This allows normal hexane with a purity of 95.5 wt% to be obtained from the top of the second distillation column by removing the constituents that are heavier than normal hexane as a second column bottom product. When both distillation columns are operated at approximately atmospheric pressure, it requires about 5.2 tons of steam per hour both for the reboiling heating source. However, when the operating pressure of the second distillation column is increased, the vapor stream coming out of the top of the second distillation column can be used as a heating medium for the reboiling source of the first distillation column. In this way, steam of only 3.1 tons per hour is required, potentially reducing the amount of steam used to 59.6% of the original amount.  相似文献   

19.
王玉春  张志浩  高源  李忠  郑华艳 《化工进展》2021,40(8):4196-4204
运用Aspen Plus软件回归文献数据校正了碳酸二甲酯(DMC)-水(H2O)混合物的UNIQUAC热力学模型参数,并以该模型为基础分析了水作为萃取剂萃取精馏分离DMC-甲醇(CH3OH)-水三元混合物的分离原理,结合混合组分的三角相图和物料组成设计了反向萃取精馏工艺,发现选用水为萃取剂可以利用DMC-水的部分互溶特性,通过三塔精馏即可分离DMC-甲醇-水三元混合物,沸点较高的DMC和少量水由塔顶馏出,而沸点较低的甲醇和大部分水由塔底采出,避免了DMC-甲醇二元共沸物的形成。同时,在相同分离要求下设计了变压精馏工艺,通过对两个精馏工艺参数模拟优化,发现萃取精馏工艺的总冷凝负荷和总加热负荷分别为888.7kW和898.2kW,其总能耗较变压精馏工艺节约了47.2%,萃取精馏工艺的年总费用(TAC)比变压精馏工艺下降了48.8%。  相似文献   

20.
《分离科学与技术》2012,47(5):791-817
Abstract

Thermodynamic analysis provides the column grand composite curves and exergy loss profiles, which are becoming readily available for a converged distillation column simulation. For example, the Aspen Plus simulator performs the thermodynamic analysis through its Column–Targeting tool for rigorous column calculations. This study uses the column grand composite curves and the exergy loss profiles obtained from Aspen Plus to assess the performance of the existing distillation columns, and reduce the costs of operation by appropriate retrofits in a methanol plant. Effectiveness of the retrofits is also assessed by means of thermodynamics and economics. The methanol plant utilizes two distillation columns to purify the methanol in its separation Section. The first column operates with 51 stages, has a side heat stream to the last stage, a partial condenser at the top and a side condenser at stage 2, and no reboiler. The second column operates with 95 stages, has a side heat stream to stage 95, a total condenser, and high reflux ratio. Despite the heat integration of the columns with the other Sections and a side condenser in column 1, the assessment of converged base case simulations have indicated the need for more profitable operations, and the required retrofits are suggested. For the first column, the retrofits consisting of a feed preheating and a second side condenser at stage 4 have reduced the total exergy loss by 21.5%. For the second column, the retrofits of two side reboilers at stages 87 and 92 have reduced the total exergy loss by 41.3%. After the retrofits, the thermodynamic efficiency has increased to 55.4% from 50.6% for the first column, while it has increased to 6.7% from 4.0% for the second. The suggested retrofits have reduced the exergy losses and hence the cost of energy considerably, and proved to be more profitable despite the fixed capital costs of retrofits for the distillation columns of the methanol plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号