首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many centers use CY and G-CSF to mobilize PBPC. In this study we explored whether a standard chemotherapy regimen consisting of mitoguazon, ifosfamide, MTX and etoposide (MIME) combined with G-CSF was capable of mobilizing PBPC in lymphoma patients. Twelve patients with Hodgkin's disease (HD) and 38 patients with non-Hodgkin's lymphoma (NHL) were mobilized with MIME/G-CSF. Most patients were heavily treated with different chemotherapy regimens receiving a median of 11 cycles (range 3 to 20) of chemotherapy prior to mobilization. It was found that the optimal time of PBPC harvest was at days 12 and 13 after initiating the mobilization regimen. The median number of collected CD34+ cells per kg body weight was 7.1 x 10(6) (range 0.5-26.2). More than 2.0 x 10(6) CD34+ cells/kg were achieved in 69% of the patients after one apheresis. When additional cycles of apheresis were done, only 6% failed to harvest this number of CD34+ cells. There was a statistically significant inverse correlation between the number of prior chemotherapy cycles and CD34+ cell yield (P = 0.003). No such association was found between CD34+ cell yield and prior radiotherapy. When MIME/G-CSF was compared with Dexa-BEAM/G-CSF, it was found that MIME/G-CSF tended to be more efficient in mobilizing PBPC in spite of being less myelotoxic. All patients transplanted with MIME/G-CSF mobilized PBPC had fast and sustained engraftment. These results demonstrate that an ordinary salvage chemotherapy regimen, such as MIME combined with G-CSF can be successfully used to mobilize PBPC.  相似文献   

2.
The purpose of the study was to evaluate the effect of delayed granulocyte colony-stimulating factor (G-CSF) use on hematopoietic recovery post-autologous peripheral blood progenitor cell (PBPC) transplantation. Patients were randomized to begin G-CSF on day +1 or day +7 post transplantation. Thirty-seven patients with lymphoma or myeloma undergoing high-dose therapy and autologous PBPC rescue were randomized to daily subcutaneous G-CSF beginning on day +1 or day +7 post-transplant. Patients < or =70 kg received 300 microg/day and >70 kg 480 microg/day. All patients were reinfused with PBPCs with a CD34+ cell count >2.0 x 10(6)/kg. Baseline characteristics of age, sex and CD34+ cell count were similar between the two arms, the median CD34+ cell count being 5.87 x 10(6)/kg in the day +1 group and 7.70 x 10(6)/kg in the day +7 group (P=0.7). The median time to reach a neutrophil count of >0.5 x 10(9)/l was 9 days in the day +1 arm and 10 days in the day +7 arm, a difference which was not statistically significant (P=0.68). Similarly, there was no difference in median days to platelet recovery >20000 x 10(9)/l, which was 10 days in the day +1 arm and 11 days in the day +7 arm (P=0.83). There was also no significant difference in the median duration of febrile neutropenia (4 vs 6 days; P=0.7), intravenous antibiotic use (7 vs 8 days; P=0.54) or median number of red blood cell transfusions (4 vs 7 units; P=0.82) between the two arms. Median length of hospital stay was 11 days post-PBPC reinfusion in both groups. The median number of G-CSF injections used was 8 in the day +1 group and 3 in the day +7 group (P < 0.0001). There is no significant difference in time to neutrophil or platelet recovery when G-CSF is initiated on day +7 compared to day +1 post-autologous PBPC transplantation. There is also no difference in number of febrile neutropenic or antibiotic days, number of red blood cell transfusions or length of hospital stay. The number of doses of G-CSF used per transplant is significantly reduced with delayed initiation, resulting in a significant reduction in drug costs. For patients with an adequately mobilized PBPC graft, the initiation of G-CSF can be delayed until day +7 post-PBPC reinfusion.  相似文献   

3.
Optimal numbers of CD34(+) cells to be reinfused in patients undergoing peripheral blood progenitor cell (PBPC) transplantation after high-dose chemotherapy are still unknown. Hematologic reconstitution of 168 transplantations performed in patients with lymphoproliferative diseases was analyzed according to the number of CD34(+) cells reinfused. The number of days from PBPC reinfusion until neutrophil recovery (>1.0 x 10(9)/L) and unsustained platelet recovery (>50 x 10(9)/L) were analyzed in three groups defined by the number of CD34(+) cells reinfused: a low group with less than or equal to 2.5 x 10(6) CD34(+) cells/kg, a high group with greater than 15 x 10(6) CD34(+) cells/kg, and an intermediate group to which the former two groups were compared. The 22 low-group patients had a significantly delayed neutrophil (P < .0001) and platelet recovery (P < .0001). The 41 high-group patients experienced significantly shorter engraftment compared with the intermediate group with a median of 11 (range, 8 to 16) versus 12 (range, 7 to 17) days for neutrophil recovery (P = .003), and a median of 11 (range, 7 to 24) versus 14 (range, 8 to 180+) days for platelet recovery (P < .0001). These patients required significantly less platelet transfusions (P = .002). In a multivariate analysis, the amount of CD34(+) cells reinfused was the only variable showing significance for neutrophil and platelet recovery. High-group patients had a shorter hospital stay (P = .01) and tended to need fewer days of antibotic administration (P = .12). In conclusion, these results suggest that reinfusion of greater than 15 x 10(6) CD34(+) cells/kg after high-dose chemotherapy for lymphoproliferative diseases further shortens hematopoietic reconstitution, reduces platelet requirements, and may improve patients' quality of life.  相似文献   

4.
The safety and optimal dose and schedule of stem cell factor (SCF) administered in combination with filgrastim for the mobilization of peripheral blood progenitor cells (PBPCs) was determined in 215 patients with high-risk breast cancer. Patients received either filgrastim alone (10 microg/kg/d for 7 days) or the combination of 10 microg/kg/d filgrastim and 5 to 30 microg/kg/d SCF for either 7, 10, or 13 days. SCF patients were premedicated with antiallergy prophylaxis. Leukapheresis was performed on the final 3 days of cytokine therapy and, after high-dose chemotherapy and infusion of PBPCs, patients received 10 microg/kg/d filgrastim until absolute neutrophil count recovery. The median number of CD34+ cells collected was greater for patients receiving the combination of filgrastim and SCF, at doses greater than 10 microg/kg/d, than for those receiving filgrastim alone (7.7 v 3.2 x 10(6)/kg, P < .05). There were significantly (P < .05) more CD34+ cells harvested for the 20 microg/kg/d SCF (median, 7.9 x 10(6)/kg) and 25 microg/kg/d SCF (median, 13.6 x 10(6)/kg) 7-day combination groups than for the filgrastim alone patients (median, 3.2 x 10(6)/kg). The duration of administration of SCF and filgrastim (7, 10, or 13 days) did not significantly affect CD34+ cell yield. Treatment groups mobilized with filgrastim alone or with the cytokine combination had similar hematopoietic engraftment and overall survival after PBPC infusion. In conclusion, the results of this study indicate that SCF therapy enhances CD34+ cell yield and is associated with manageable levels of toxicity when combined with filgrastim for PBPC mobilization. The combination of 20 microg/kg/d SCF and 10 microg/kg/d filgrastim with daily apheresis beginning on day 5 was selected as the optimal dose and schedule for the mobilization of PBPCs.  相似文献   

5.
We investigated peripheral blood progenitor cell (PBPC) mobilization by disease-specific chemotherapy in patients with metastatic soft tissue sarcoma (STS). Nine patients, five females and four males, aged 12-51 years, pretreated by one to nine courses of cytotoxic chemotherapy, underwent STS-specific mobilization followed by G-CSF at 5 microg/kg/day. PBPC were collected by 19 conventional-volume aphereses (8-12 l) with one to four procedures in individual patients. Leukaphereses started on median day 15 (range 13-18) from the first day of mobilization chemotherapy at medians of 25.8 x 10(3) WBC/microl (6.8-46.9), 3.5 x 10(3) MNC/microl (1.1-8.8), 122 x 10(3) platelets/microl (72-293) and 30.7 CD34+ cells/microl (6.7-207.8). Cumulative harvests resulted in medians of 4.6 x 10(8) MNC/kg (3.0-6.4), 2.9 x 10(6) CD34+ cells/kg (1.1-11.1) and 12.0 x 10(4) CFU-GM/kg (2.0-37.8). Eight patients underwent high-dose chemotherapy (HDCT) followed by PBPC rescue. Seven patients recovered hematopoiesis at medians of 12 days (8-15) for ANC >0.5 x 10(3)/microl and 14 days (8-27) for platelets >20 x 10(3)/microl. One patient, who received 1.6 x 10(6) CD34+ cells/kg, exhibited delayed ANC recovery on day +37 and failed to recover platelets until hospital discharge on day +55. We conclude that in patients with metastatic STS, who are pretreated by standard chemotherapy, PBPC can be mobilized by a further course of STS-specific chemotherapy plus G-CSF. One to four conventional-volume aphereses result in PBPC autografts that can serve as hematopoietic rescue for patients scheduled for HDCT.  相似文献   

6.
Fourteen patients with stage II-IV breast cancer were enrolled in a phase II study of cyclophosphamide followed by PIXY321 as a means of mobilizing peripheral blood progenitor cells (PBPC). All 14 women tolerated PIXY321 well, with the predominant toxicities being erythema at the injection site, fever, and arthralgias. A median of two aphereses yielded a mean of 1.3 x 10(8) mononuclear cells/kg, 8.9 x 10(4) colony-forming units-granulocyte/macrophage (CFU-GM)/kg, and 4.5 x 10(6) CD34+ cells/kg. All 14 patients underwent high-dose chemotherapy with PBPC support, the median day to ANC >500 cells/microliter was 10.6, and the median day to platelets >20,000 cells/microliter was 13. The day of 90th percentile platelet recovery was 15. When compared to PBPCs mobilized by cyclophosphamide followed by GM-CSF, the use of PIXY321 may confer an advantage of enhanced platelet recovery.  相似文献   

7.
We evaluated the feasibility of collecting peripheral blood progenitor cells (PBPC) in patients with acute myeloid leukaemia (AML) following two cycles of induction chemotherapy with idarubicin, cytarabine and etoposide (ICE), and one cycle of consolidation therapy with high-dose cytarabine and mitoxantrone (HAM). Thirty-six patients of the multicentre treatment trial AML HD93 were enrolled in this study, and a sufficient number of PBPC was harvested in 30 (83%). Individual peak concentrations of CD34+ cells in the blood varied (range 13.1-291.5/microl; median 20.0/microl). To reach the target quantity of 2.5 x 10(6) CD34+ cells/kg, between one and six (median two) leukaphereses (LP) were performed. The LP products contained between 0.2 x 10(6) and 18.9 x 10(6) CD34+ cells/kg (median 1.2 x 10(6)/kg). Multivariate analysis showed that the white blood cell count prior to HAM and the time interval from the start of HAM therapy to reach an unsupported platelet count > 20 x 10(9)/l were predictive for the peak value of CD34+ cells in the blood during the G-CSF stimulated haematological recovery. In 16 patients an intraindividual comparison was made between bone marrow (BM) and PBPC grafts. Compared to BM grafts, PBPC grafts contained 14-fold more MNC, 5-fold more CD34+ cells and 36-fold more CFU-GM. A CD34+ subset analysis showed that blood-derived CD34+ cells had a more immature phenotype as indicated by a lower mean fluorescence intensity for HLA-DR and CD38. In addition, the proportion of CD34+/Thy-1+ cells tended to be greater in the PBPC grafts. The data indicate that sufficient PBPC can be collected in the majority of patients with AML following intensive double induction and first consolidation therapy with high-dose cytarabine and mitoxantrone.  相似文献   

8.
BACKGROUND: Mobilized peripheral blood progenitor cells (PBPCs) have increasingly been used to replace autologous bone marrow to allow faster hematopoietic reconstitution after myeloablative therapy in various malignancies. There is a paucity of data concerning factors that affect the total yield of three tandem leukaphereses. METHODS: Factors affecting the yield of PBPCs were analyzed in a series of 121 consecutive patients including 36 with non-Hodgkin's lymphoma, two with Hodgkin's disease, four with multiple myeloma, 44 with acute leukemia, 20 with breast cancer and 15 with other solid tumors. PBPCs were mobilized using granulocyte-colony-stimulating factor (G-CSF) alone (group I, n = 15), or after conventional-dose (group II, n = 70) or high-dose (group III, n = 36) chemotherapy followed by G-CSF. The total yield of three tandem PBPC collections for each patient was assessed by the number of mononuclear cells (MNCs), CD34+ cells and colony-forming units of granulocyte macrophages (CFU-GM). The factors evaluated included age, sex, diagnosis, history of marrow involvement, previous radiotherapy, the number of prior chemotherapy cycles and mobilization method. The two -sample t-test and logistic regression analysis were performed for univariate and multivariate analysis, respectively. RESULTS: With univariate analysis, a diagnosis of acute leukemia, positive history of bone marrow involvement, more chemotherapy cycles and mobilization with high-dose chemotherapy adversely affected the yields of CD34+ cells. By multivariate analysis, Group II had higher yields of MNCs (p = 0.039), CFU-GM (p = 0.002) and CD34+ cells (p = 0.011) than Group III. Fewer cycles of prior chemotherapy is the common favorable factor for the yields of both CD34+ cells (p = 0.016) and CFU-GM (p = 0.017). CONCLUSIONS: The number of prior chemotherapy cycles adversely affects progenitor cell yield. Conventional-dose chemotherapy followed by G-CSF seems to be the mobilization methods of choice for heavily pretreated cancer patients with limited bone marrow reserve. PBPCs should be harvested early, when the tumor burden is less, to avoid cumulative marrow toxicity from chemotherapy.  相似文献   

9.
In the use of autologous PBPC transplantation in patients with multiple myeloma, contamination of PBPC with myeloma cells is commonly observed. Enrichment for CD34+ cells has been employed as a method of reducing this contamination. In this study the reduction of myeloma cells in PBPC was accomplished by the positive selection of CD34+ cells using immunomagnetic bead separation (Isolex 300 system). PBPC were mobilized from 18 patients using cyclophosphamide (4.5 g/m2) and G-CSF (10 microg/kg/day). A median of two leukaphereses and one selection was performed per patient. The median number of mononuclear cells processed was 3.50 x 10(10) with a recovery of 1.11 x 10(8) cells after selection. The median recovery of CD34+ cells was 48% (range 17-78) and purity was 90% (29-99). The median log depletion of CD19+ cells was 3.0. IgH rearrangement, assessed by PCR, was undetectable in 13 of 24 evaluable CD34+ enriched products. Patients received 200 mg/m2 of melphalan followed by the infusion of a median of 2.91 x 10(6)/kg CD34+ cells (1.00-16.30). The median time to absolute neutrophil count >0.5 x 10(9)/l was 11 days, and sustained platelet recovery of >20 x 10(9)/l was 14 days. We conclude that immunomagnetic-based enrichment of CD34+ cells results in a marked reduction in myeloma cells without affecting engraftment kinetics.  相似文献   

10.
BACKGROUND: We compared hematopoietic progenitor cell (HPC) collection and neoplastic cell contamination in breast cancer patients given cyclophosphamide (CTX) plus granulocyte-colony stimulating factor (G-CSF) or G-CSF alone for mobilization. PATIENTS AND METHODS: In 57 stage II-III breast cancer patients, CD34+ cells, colony-forming units-granulocyte macrophage (CFU-GM), early HPC and breast cancer cells were counted in HPC collections obtained after CTX plus G-CSF (n = 27) or G-CSF-alone mobilization (n = 30). RESULTS: The CD34+ cell collection was about two-fold greater after CTX plus G-CSF mobilization (11.0 +/- 7.9 vs. 5.8 +/- 3.5 x 10(6)/kg, P < 0.001). Similarly, the total number of CFU-GM, CD34+CD38- cells and of week-5 cobblestone area forming cells (CAFC) collected was significantly higher in patients mobilized with CTX plus G-CSF. Breast cancer cells were found in the apheresis products of 22% of patients mobilized with CTX plus G-CSF and in 10% of patients mobilized with G-CSF alone (P = 0.36). Of seven patients who failed G-CSF-alone mobilization and eventually underwent chemotherapy plus G-CSF mobilization, none had cytokeratin-positive cells after G-CSF mobilization, whereas four out of seven had cytokeratin-positive cells after chemotherapy plus G-CSF (P = 0.07 by chi 2 test). CONCLUSION: The CTX plus G-CSF mobilization protocol was associated with a significantly higher HPC collection. However, this benefit was not accompanied by a reduction in the incidence of tumor-contaminated HPC graft.  相似文献   

11.
We have prospectively evaluated the feasibility and results of the biotin-avidin immunoadsorption method (Ceprate SC system) for a phase I/II study of T-cell depletion of granulocyte colony-stimulating factor (G-CSF) mobilized peripheral blood progenitor cells (PBPC) for allogeneic transplantation. Twenty consecutive patients, median age, 40 years (21 to 54) and diagnoses of chronic myeloid leukemia in chronic phase (n = 5), acute myeloblastic leukemia (n = 7), acute lymphoblastic leukemia (n = 2), chronic myelomonocytic leukemia (n = 1), refractory anemia with excess of blasts in transformation (n = 3), histiocytosis X (n = 1), and chronic lymphocytic leukemia (n = 1), were conditioned with cyclophosphamide (120 mg/kg) and total body irradiation (13 Gy; 4 fractions). HLA identical sibling donors received G-CSF at 10 microg/kg/d subcutaneously (SC); on days 5 and 6 (19 cases) and days 5 to 8 (1 case) donors underwent 10 L leukapheresis. PBPC were purified by positive selection of CD34+ cells using immunoadsorption biotin-avidin method (Ceprate SC) and were infused in the patients as the sole source of progenitor cells. No growth factors were administered posttransplant. The median recovery of CD34+ cells after the procedure was of 65%. The median number of CD34+ cells infused in the patients was 2.9 (range, 1.5 to 8.6) x 10(6)/kg. The median number of CD3+ cells administered was 0.42 x 10(6)/kg (range, 0.1 to 2). All patients engrafted. Neutrophil counts >500 and >1,000/microL were achieved at a median of 14 days (range, 10 to 18) and 15 days (range, 11 to 27), respectively. Likewise, platelet counts >20,000 and >50,000/microL were observed at a median of 10 days (range, 6 to 23) and 17 days (range, 12 to 130), respectively. Graft-versus-host disease (GVHD) prophylaxis consisted of cyclosporine plus methylprednisolone. No patient developed either grade II to IV acute or extensive chronic GVHD. After a median follow-up of 7.5 months (range, 2 to 22) three patients have relapsed, and one of them is again in hematologic and cytogenetic remission after infusion of the donor lymphocytes. Two patients died in remission: one on day +109 of pulmonary aspergillosis and the other on day +251 of metastasic relapse of a previous breast cancer. Sixteen of the 20 patients are alive in remission after a median follow-up of 7.5 months (range, 2 to 22). In conclusion, despite the small number of patients and limited follow-up, it appears that this method allows a high CD34+ cell recovery from G-CSF mobilized PBPC and is associated with rapid engraftment without significant GVHD, and with low transplant related mortality.  相似文献   

12.
We examined the efficiency of disease-specific "standard" chemotherapies epirubicin, cyclophosphamide (EC); cyclophosphamide, vincristine, doxorubicin, etoposide, prednisolone (CHOEP); epirubicin, ifosfamide (EPI/IFOS) for peripheral blood progenitor cell (PBPC) mobilization in comparison to well-characterized mobilization protocols, i.e. etoposide, ifosfamide, cisplatin, epirubicin (VIPE) and dexamethasone, carmustine, etoposide, cytarabine, melphalan (DexaBEAM). Twenty-seven patients with various malignancies underwent 75 apheresis procedures for PBPC collection. Median cell yields from all 75 aphereses were 1.18 x 10(5) mononuclear cells/kg [range (0.28-3.7) x 10)8)], 1.4 x 10(5) granulocyte/macrophage-colony-forming units (CFU-GM)/kg [range (0.2-11) x 10(5)] and 3.3 x 10(6) CD34+cells/kg [range (0.35-17.7) x 10(6). CD34+/ CD90+ cells could be mobilized by all mobilization regimens used. The difference observed in the mobilization of CD34+ cells was only of low significance when the mobilization regimens were compared, whereas the mobilizations of MNC and CFU-GM were significantly different between the groups. Breast cancer patients treated with the VIPE regimen (including pretreated women) had a significantly higher CFU-GM rate than patients treated with EC (P=0.0005). Mobilized CD34+ PBPC were correlated with CFU-GM in all apheresis products. The linear correlation coefficients differed for the various mobilization groups: DexaBEAM (r=0.9, P < 0.0001), VIPE (r=0.68, P=0.0024), CHOEP (r=0.52, P=0.022), EPI/ IFOS (r=0.34, P=0.11) and EC (r=0.23, P=0.2). We conclude that clonogenic assays can provide additional information about the autotransplant quality, particularly when alternative or new mobilization regimens are being investigated.  相似文献   

13.
BACKGROUND: There is great interpatient variability in the number of peripheral blood stem cells collected, as measured by CD34+ cell content, after the administration of chemotherapy and a growth factor. The ability to predict patients who fail to yield adequate quantities of CD34+ cells would be of value. However, very few reports include large numbers of patients treated in an identical fashion. STUDY DESIGN AND METHODS: Between 1991 and 1995, 497 consecutive patients with a variety of malignant diseases received cyclophosphamide (4 g/m2), etoposide (600 mg/m2), and granulocyte-colony-stimulating factor (6 micrograms/kg/day) for mobilization and collection of a target dose > or = 2.5 x 10(8) CD34+ cells per kg. Multivariate analyses were performed to determine the factors associated with failure to achieve this target harvest. RESULTS: A median of 14.71 x 10(6) CD34+ cells per kg (range, 0.08-137.55) was harvested with a median of 2 (range, 1-11) apheresis procedures. Ninety-one percent of patients yielded > or = 2.5 x 10(5) CD34+ cells per kg. Patients with Stage II-III breast cancer, who had pretreatment platelet counts > or = 150 x 10(9) per L and patients who underwent < or = 1 prior chemotherapy regimen had improved CD34+ cell yields. However, most patients with adverse risk factors yielded > or = 2.5 x 10(6) CD34+ cells per kg. CONCLUSION: A regimen of cyclophosphamide, etoposide, and granulocyte-colony-stimulating factor led to the successful collection of adequate numbers of CD34+ cells in most patients without excessive toxicity. These observations confirm previous reports that intense prior therapy adversely affects the quantity of CD34+ cells harvested. Pretreatment and posttreatment variables did not predict with any certainty the small fraction of patients who fail to yield > or = 2.5 x 10(6) CD34+ cells per kg via multiple apheresis procedures.  相似文献   

14.
High-dose etoposide (2.0-2.4 g m(-2)) with granulocyte colony-stimulating factor (G-CSF) is an effective strategy to mobilize peripheral blood progenitor cells (PBPCs), although in some patients this is associated with significant toxicity. Sixty-three patients with malignancy were enrolled into this non-randomized sequential study. The majority (55/63, 87%) had received at least two prior regimens of chemotherapy, and seven patients had previously failed to mobilize following high-dose cyclophosphamide with G-CSF. Consecutive patient groups received etoposide at three dose levels [2.0 g m(-2) (n = 22), 1.8 g m(-2) (n = 20) and 1.6 g m(-2) (n = 21)] followed by daily G-CSF. Subsequent leukaphereses were assayed for CD34+ cell content, with a target total collection of 2.0 x 10(6) CD34+ cells kg(-1). Toxicity was assessed by the development of significant mucositis, the requirement for parenteral antibiotics or blood component support and rehospitalization incidence. Ten patients (16%) had less than the minimum target yield collected. Median collections in the three groups were 4.7 (2 g m(-2)), 5.7 (1.8 g m(-2)) and 6.5 (1.6 g m(-2)) x 10(6) CD34+ cells kg(-1). Five of the seven patients who had previously failed cyclophosphamide mobilization achieved more than the target yield. Rehospitalization incidence was significantly lower in patients receiving 1.6 g m(-2) etoposide than in those receiving 2.0 g m(-2) (P = 0.03). These data suggest that high-dose etoposide with G-CSF is an efficient mobilization regimen in the majority of heavily pretreated patients, including those who have previously failed on high-dose cyclophosphamide with G-CSF. An etoposide dose of 1.6 g m(-2) appears to be as effective as higher doses but less toxic.  相似文献   

15.
High-dose cyclophosphamide (HD-CY) has been shown to decrease the tumor mass in multiple myeloma (MM) patients and to be effective in the mobilization of PBPC. By administering hematopoietic growth factor the quantity of progenitor cells in the peripheral blood increased and the hematological toxicity of CY could be reduced. Thirty-two patients with stage II and stage III MM were treated to mobilize and harvest a sufficient amount of PBPC for autologous transplantation. Sixteen patients received 4 g/m2 CY and 16 patients 7 g/m2 CY in divided doses of 1 g/m2 every 2 h. Both patient groups were comparable for disease stages as well as previous therapies. Twenty-four hours after chemotherapy 300 micrograms GCSF were administered subcutaneously once daily until the last day of leukapheresis. Administration of 7 g/m2 HD-CY resulted in statistically significantly higher peak values for CD34+ progenitor cells (47.86/microliters vs 18.75/microliters, P = 0.0198) in the peripheral blood. PBPC autografts containing > 2.5 x 10(6) CD34+ cells/kg BW could be obtained at the first attempt from 14 of 16 patients treated with 7 g/m2 CY as compared to 10 of 16 patients treated with 4 g/m2 CY (P = 0.11). The analysis of potentially malignant CD19+ B cells showed a highly significant lower mean CD19+ cell content/kg BW per leukapheresis in the 7 g/m2 compared to the 4 g/m2 CY group (0.75 vs 1.81 x 10(6), P = 0.001). WHO grade IV treatment-related non-hematologic toxicity was not observed. We prefer the 7 g/m2 CY dosage followed by cytokine administration for the mobilization of PBPC in advanced state MM patients pretreated with alkylating agents.  相似文献   

16.
The prognosis in patients with primary brain tumors treated with surgery, radiotherapy and conventional chemotherapy remains poor. To improve outcome, combination high-dose chemotherapy (HDC) has been explored in children, but rarely in adults. This study was performed to determine the tolerability of three-drug combination high-dose thiotepa (T) and etoposide (E)-based regimens in pediatric and adult patients with high-risk or recurrent primary brain tumors. Thirty-one patients (13 children and 18 adults) with brain tumors were treated with high-dose chemotherapy: 19 with BCNU (B) and TE (BTE regimen), and 12 with carboplatin (C) and TE (CTE regimen). Patients received growth factors and hematopoietic support with marrow (n = 15), peripheral blood progenitor cells (PBPC) (n = 11) or both (n = 5). The 100 day toxic mortality rate was 3% (1/31). Grade III/IV toxicities included mucositis (58%), hepatitis (39%) and diarrhea (42%). Five patients had seizures and two had transient encephalopathy (23%). All patients had neutropenic fever and all pediatric patients required hyperalimentation. Median time to engraftment with absolute neutrophil count (ANC) >0.5 x 10(9)/l was 11 days (range 8-37 days). Time to ANC engraftment was significantly longer (P = 0.0001) in patients receiving marrow (median 14 days, range 10-37) than for PBPC (median 9.5 days, range 8-10). Platelet engraftment >50 x 10(9)/l was 24 days (range 14-53 days) in children. In adults, platelet engraftment >20 x 10(9)/l was 12 days (range 9-65 days). In 11 patients supported with PBPC, there was a significant inverse correlation between CD34+ dose and days to ANC (rho = -0.87, P = 0.009) and platelet engraftment (rho = -0.85, P = 0.005), with CD34+ dose predicting time to engraftment following HDC. Overall, 30% of evaluable patients (7/24) had a complete response (CR) (n = 3) or partial response (PR) (n = 4). Median time to tumor progression (TTP) was 7 months, with an overall median survival of 12 months. These TE-based BCNU or carboplatin three-drug combination HDC regimens are safe and tolerable with promising response rates in both children and older adults.  相似文献   

17.
The availability of hematopoietic growth factors has greatly facilitated the mobilization and collection of peripheral blood stem cells (PBSC). It was the aim of this double-blind study to compare the PBSC-mobilizing efficacy of recombinant human G-CSF and GM-CSF when administered post-chemotherapy. Twenty-six patients with relapsed Hodgkin's disease were included in the study. Their median age was 31 years (range, 22-59) and 14 patients were males and 12 were females. Patients were pretreated with a median of eight cycles of cytotoxic chemotherapy, while 18 patients had undergone extended field irradiation. The patients received dexamethasone 24 mg days 1-7, melphalan 30 mg/m2 day 3, BCNU 60 mg/m2 day 3, etoposide 75 mg/m2 days 4-7, Ara-C 100 mg/m2 twice daily days 4-7 (Dexa-BEAM). Twelve patients were randomized to receive 5/microg/kg/day G-CSF and 14 patients to receive 5 microg/kg/day GM-CSF, both administered subcutaneously starting on day 1 after the end of Dexa-BEAM. Primary endpoints of the study were the number of CD34+ cells harvested per kg body weight on the occasion of six consecutive leukaphereses and the time needed for hematological reconstitution following autografting. Twenty-one patients completed PBSC collection, and six patients of the G-CSF group and nine of the GM-CSF group were autografted. No difference was observed with respect to the median yield of CFU-GM and CD34+ cells: 32.5 x 10(4)/kg vs 31.3 x 10(4)/kg CFU-GM, and 7.6 x 10(6)/kg vs 5.6 x 10(6)/kg CD34+ cells, for G-CSF and GM-CSF, respectively (U test, P= 0.837 and 0.696). High-dose chemotherapy consisted of cyclophosphamide 1.7 g/m2 days 1-4, BCNU 150 mg/m2 days 1-4, etoposide 400 mg/m2 days 1-4. All patients transplanted with more than 5 x 10(6) CD34+ cells/kg had a rapid platelet recovery (20 x 10(9)/l) between 6 and 11 days and neutrophil recovery (0.5 x 10(9)/1) between 9 and 16 days, while patients transplanted with less than 5 x 10(6)/kg had a delayed reconstitution, regardless of the kind of growth factor used for PBSC mobilization. In conclusion, our data indicate that in patients with Hodgkin's disease G-CSF and GM-CSF given after salvage chemotherapy appear to be not different in their ability to mobilize PBSC resulting in a similar time needed for hematological reconstitution when autografted following high-dose therapy.  相似文献   

18.
Engraftment kinetics after high-dose chemotherapy (HDC) were evaluated in patients receiving autologous peripheral blood stem cell (PBSC) infusions with a low CD34+ cell content. Forty-eight patients were infused with < 2.5 x 10(6) CD34+ cells/kg; 36 because of poor harvests and 12 because they electively received only a fraction of their harvested cells. A median of 2.12 x 10(6) CD34+ cells/kg (range, 1.17-2.48) were infused following one of seven different HDC regimens. All patients achieved absolute neutrophil counts > or = 0.5 x 10(9)/l at a median of day 11 (range, 9-16). Forty-seven patients achieved platelet counts > or = 20 x 10(9)/l at a median of day 14 (range, 8-250). Nine of 47 (19%) had platelet recovery after day 21, 4/47 (9%) after day 100 and one died on day 240 without platelet recovery. Twenty-six patients (54%) died of progressive disease in 51-762 days; 22 (46%) are alive at a median of 450 days (range, 94-1844), 17 (35%) of whom are surviving disease-free at a median of 494 days (range, 55-1263). No patient died as a direct consequence of low blood cell counts. These data demonstrate that PBSC products containing 1.17-2.48 x 10(6) CD34+ cells/kg resulted in relatively prompt neutrophil recovery in all patients but approximately 10% had delayed platelet recovery.  相似文献   

19.
Allogeneic peripheral blood progenitor cell (PBPC) transplants are an alternative to BMT, although G-CSF mobilization dose, timing of pheresis and risk of GVHD are not well defined. We compared harvest characteristics, donor and recipient outcomes and costs of two PBPC transplant strategies with historical controls who received BMT. Twenty donors mobilized with four daily s.c. G-CSF doses (5 microg/kg/day) (group 1) and 20 mobilized with 10 microg/kg/day G-CSF (group 2) were compared with 20 BM controls (group 3). G-CSF and phereses were well tolerated. Four of 40 PBPC donors required femoral catheter placement. At least 2.5 x 10(6) CD34+/kg recipient weight were collected with two phereses in 19/20 donors (group 1) and 18/20 donors (group 2). Time to neutrophil (18 vs 20 vs 22 days, P = 0.02) and platelet (21 vs 24 vs 27 days, P = 0.005) engraftment was shorter in the PBPC groups (group 2 vs group 1 vs group 3) but secondary engraftment outcomes were not different. The incidence of grade 2-4 aGVHD was higher in the low-dose G-CSF group (group 1) but there was no difference in cGVHD, 100-day or 1-year survival. The mean PBPC transplant cost (group 1) at first hospital discharge was less than BM (group 3) ($34,643 vs $37,354) but the mean overall cost for both groups was similar at 100 days ($46,334 vs $46,083). Allogeneic PBPC transplant with short course, low-dose G-CSF mobilization is safe, feasible and cost equivalent to allogeneic BMT.  相似文献   

20.
For 10 consecutive patients in our unit who did not show a significant rise in blood progenitor cells within 14 days following chemotherapy and G-CSF, we increased the G-CSF dose from 5 to 10 microg/kg/day (n = 9) or from 10 to 15 microg/kg/day (n = 1). As a result, there were significant increases in total yield as well as yield per apheresis of mononuclear cells, CD34+ cells and CFU-GM (P < 0.025, <0.01 and <0.005, respectively). After G-CSF dose escalation, six of the 10 patients had sufficient CD34+ cells for performing transplantation. These results demonstrate a dose-dependent response of progenitor cell mobilization by G-CSF when used in combination with chemotherapy. Moreover, increasing the dose of G-CSF as late as the third week of mobilization may still provide sufficient cell yield even with patients who did not show a significant mobilization with conventional doses of G-CSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号