首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
《煤炭技术》2016,(8):171-173
为研究温度、压力对煤吸附瓦斯性能的影响,进行了不同温度下煤的瓦斯等温吸附试验。试验测试出煤样在35℃、50℃、65℃、80℃、105℃下的等温吸附线。研究表明:随着温度的升高,同一压力下煤样的吸附量减小,温度越高,吸附量减小趋势越明显;温度相同时,煤样的吸附量随着压力的增大而增大;在某一温度区间内,随着温度的升高,煤样的吸附常数a、b值线性递减。  相似文献   

2.
以焦作无烟煤为研究对象,采用自制高低温吸附装置,通过对煤在-30,-20,-10,20,30℃下瓦斯吸附过程的测试,研究煤在低温环境下的瓦斯吸附特性。实验结果表明:温度对煤的瓦斯吸附量影响效应明显,温度越低,煤的瓦斯吸附量越大;在低温环境下(0℃以下),吸附常数a、b值随温度降低而增大,温度每降低1℃,a值升高约18%,b值升高约4%。在取心过程中,降低环境温度,可以增加煤的瓦斯吸附能力,减少井下钻孔取心过程的漏失瓦斯量,提高瓦斯含量测值的准确性。  相似文献   

3.
为探索深部煤体中地温对瓦斯赋存的影响,基于单分子层吸附理论,采用热力学理论推导出Langmuir方程,得到了温度与Langmuir吸附常数a、b随温度变化的理论表达式,进行了不同温度下的煤与瓦斯等温吸附实验;实验表明,对于给定气-固吸附体系,Langmuir吸附常数a值只与吸附质和吸附剂的自身属性有关,并由吸附剂的固有总吸附位数决定,而与外界的温度和压力无关;对于同一种煤而言,可以认为a值是一个常数。不同吸附剂的b值因吸附剂自身物理特性的不同也会有一定的差异;b值随温度的升高逐渐减小,用导出的理论方程证明了温度与a、b值的统计热力学关系,并用实验进行了证实,澄清了以往温度与a、b值关系的实验性争议。工程应用中,在一定温度区间内,吸附常数b值与温度的关系可以采用线性减函数简化描述。  相似文献   

4.
为研究静电场对瓦斯吸附作用的影响,运用EST802静电发生器对不同煤样分别施加0、4、8、12、16 k V的恒定电压,然后采用WY-98B吸附常数测定仪测定各煤样的瓦斯吸附量及Langmuir吸附常数a、b值。得出:在相同实验条件下,加场前后煤样瓦斯吸附量随电压升高而增加,b值相对a值变化明显,且呈增大趋势;对于不同煤阶不同破坏类型煤样受静电场影响程度上有:中高变质的烟煤大于无烟煤,软煤大于硬煤,且煤岩组分对含瓦斯煤样的电场响应程度影响较大。  相似文献   

5.
李波波  杨康  李建华  任崇鸿  许江  左宇军  张敏 《煤炭学报》2018,43(10):2857-2865
利用等温吸附试验仪器与含瓦斯煤热-流-固耦合三轴伺服渗流装置,为模拟深部煤层瓦斯开采过程,分别进行不同温度下等温吸附试验与孔隙压力升高的渗流试验,建立考虑过剩吸附量修正的吸附模型并修正吸附膨胀模型,探究力热耦合作用下煤岩吸附与渗流变化规律。结果表明:瓦斯吸附量在不同温度下随瓦斯压力升高均呈增大趋势,随温度升高吸附量逐渐降低。在高压下需考虑过剩吸附量造成的误差,修正的Langmuir模型比原模型计算结果精度更高;建立了考虑温度与过剩吸附量修正的吸附变形模型与吸附膨胀模型,煤岩吸附应变随孔隙压力升高而减小,且温度越高应变变化量越小。随孔隙压力升高,煤岩渗透率及吸附膨胀与滑脱效应导致的渗透率变化量均呈下降的趋势,且随温度升高3者逐渐增加;吸附膨胀是引起煤岩渗透率减小的主要因素,吸附膨胀与滑脱效应对渗透率的贡献率随孔隙压力升高逐渐下降,其贡献率均随温度升高逐渐增加。  相似文献   

6.
为研究煤层气开采过程中温度、气体压力对煤岩吸附和渗流特性的影响,利用等温吸附试验装置与含瓦斯煤三轴渗流试验装置,分别进行等温吸附试验及不同温度条件下变气体压力的三轴渗流试验。考虑应力作用下毛细管分形特征,建立了裂隙体积应力敏感性模型,并在此基础上建立考虑煤基质内部膨胀变形、温度及气体压力变化的煤岩渗透率模型。结果表明:(1)在相同温度下,随着气体压力升高,煤岩瓦斯吸附量逐渐增大,但吸附速率呈相反趋势。在相同气体压力下,随着温度升高,瓦斯吸附量呈下降趋势。当有效应力恒定时,煤岩吸附变形量随着气体压力增大而增大,并且随着温度增大而减少。(2)在外部应力作用下,煤岩内部毛细管侧面发生收缩并产生径向延展。新建裂隙体积应力敏感性模型计算得到的裂隙压缩系数与实验室所得值在同一数量级,并随有效应力升高呈下降趋势。(3)新建渗透率模型能较好反映不同温度、气体压力下渗透率演化规律。在相同温度下,随着气体压力升高,煤岩渗透率先急剧下降后趋于平缓,孔裂隙周围基质膨胀变形对于渗透率的影响逐渐降低。  相似文献   

7.
为了比较不同条件对瓦斯吸附常数的影响,研究了5种不同煤阶的煤样在7个不同压力点下进行的瓦斯吸附试验,试验分为定容和定压动态2类瓦斯吸附试验,分别获得了定容及定压条件下的吸附平衡点数据,结合Langmuir单分子层理论求出了定容及定压条件下的吸附常数a、b值,并进一步讨论了造成a、b值差异的原因。结果表明:定容和定压2种试验条件对瓦斯饱和吸附量(a值)影响很小,但对瓦斯吸附速率(b值)影响较大,即定压条件下瓦斯吸附速率要大于定容条件下瓦斯吸附速率;进一步得出吸附常数a值随挥发分增大而减小,说明瓦斯饱和吸附量随煤阶的增高而增大。  相似文献   

8.
煤对瓦斯吸附特征研究   总被引:1,自引:1,他引:0  
通过分析煤对瓦斯的吸附作用,指出温度和瓦斯压力对煤体的吸附量影响显著,瓦斯压力越大,温度越低,吸附量越大。吸附温度对吸附常数a,b都有显著影响a,随温度的升高而降低。煤体放散瓦斯的速度符合文特式和孙重旭式,在初期,瓦斯放散的速度极快,并迅速衰减,决定突出强度。  相似文献   

9.
为探究深部煤层赋存环境温度变化及对瓦斯吸附的影响,在研究地温变化规律的基础上,预测了深部煤层赋存环境温度,通过高压容量法测试了5组不同温度下吸附常数,从理论上分析了温度对分子热运动的作用效应,利用Materials Studio软件模拟了5组不同温度下的平均吸附热绝对值。研究结果表明:随着埋藏深度的增加,煤层赋存环境温度呈线性升高;随着温度的升高,吸附常数a呈线性减小,吸附常数b呈现出阶段性变化,在30℃~120℃变化较小,高于120℃后迅速增大;环境温度升高,分子热运动加剧,增加了甲烷分子的脱附速度;平均瓦斯吸附热的绝对值随着温度的升高线性增大,增加了瓦斯吸附难度,降低了瓦斯吸附量。  相似文献   

10.
为了探索温度对瓦斯赋存状态与抽采效果的影响,实验研究了煤样在不同温度下的吸附解吸变化规律。根据实验数据,给出Langmuir吸附常数a和b值随温度变化的回归方程及扩散速度随温度、时间的回归方程。实验结果表明:吸附常数a和b值都随温度的升高而降低,a随温度变化符合二次函数关系,b则符合线性函数关系;相同压力作用下,解吸量、扩散速度和总扩散量随温度的升高而增大;温度越高,扩散初速度越大;温度不变时,扩散速度随时间延长呈负指数迅速衰减。根据实验结论和相关物理学原理,煤层外加的电场、交变电磁场、功率超声波等方法能提高煤层温度,具有促进瓦斯解吸和增大扩散速率的作用,能提高瓦斯抽采率;瓦斯扩散初速度越大,煤层突出危险性越高,所以降低煤层温度,可以减小煤层的突出危险性。  相似文献   

11.
李波波  李建华  杨康  任崇鸿  许江  张敏 《煤炭学报》2019,44(4):1076-1083
煤矿开采深度不断增加,煤层瓦斯含量升高导致动力灾害逐渐增多,给煤矿安全开采带来严峻考验。对于瓦斯在煤层中流动的研究一直以来都备受关注,其中渗透率正是影响煤层中瓦斯流动的关键参数之一。因此,为准确模拟开采环境变化导致的煤岩变形及渗透特性变化,利用含瓦斯煤热-流-固耦合三轴伺服渗流装置,开展不同含水条件下孔隙压力升高过程中煤岩渗透特性的试验研究,建立考虑含水率的吸附方程和吸附-渗透率模型,探讨含水率和孔隙压力共同作用对煤岩变形及渗透特性的影响。研究结果表明:①孔隙压力升高过程中,径向应变及轴向应变随孔隙压力的升高均呈降低趋势,瓦斯流量的变化呈上升趋势,煤基质由于吸附瓦斯产生膨胀变形,体积应变逐渐减小。②当含水率恒定时,随着孔隙压力的升高,瓦斯吸附量随孔隙压力增大先增大而后趋于平缓,产生的吸附变形的变化趋势与其相同;当孔隙压力恒定时,煤岩的吸附量和吸附变形均随着含水率的增大而减小。③在恒定含水率条件下,煤岩渗透率曲线随孔隙压力的升高先减小后趋于平缓;而在相同的孔隙压力条件下,随含水率的增加,煤岩渗透率整体逐渐减小,而且含水率越大孔隙压力对渗透率的影响越弱,水分子对渗透率的影响越强。④构建了考虑含水率的吸附量计算方程,并在此基础上进一步构建考虑含水率煤岩吸附-渗透率模型,其中所计算的渗透率值与试验所测结果基本一致,反映了煤岩渗透率变化规律。  相似文献   

12.
煤吸附甲烷的温度-压力综合吸附模型   总被引:9,自引:1,他引:8       下载免费PDF全文
选取暗褐煤、气煤、焦煤、贫煤、无烟煤和超变无烟煤等有代表性煤阶的系列煤样,进行了20,30,40,50 ℃等不同温度下的高压等温吸附试验;应用吸附势理论,研究了煤的甲烷吸附特征曲线的形态特点,推导出新的煤吸附甲烷的温度-压力综合吸附模型,并给出了模型中特征常数的求取方法;利用大量高压等温吸附试验数据对该模型的预测结果进行了验证,并且与兰米尔(Langmuir)等温吸附模型进行了比较.结果表明,该模型的预测结果与吸附试验数据非常吻合,平均相对偏差小于5%,说明该模型能够很好地描述温度和压力共同作用下,包括特低煤阶的暗褐煤和特高煤阶的超无烟煤在内的全部煤阶的煤对甲烷的吸附特性;比兰米尔(Langmuir)等温吸附模型的功能更强,适用范围更宽.   相似文献   

13.
温度及含水率对切削原煤吸附瓦斯特性的影响   总被引:1,自引:0,他引:1  
王俊峰  张力  赵东 《煤炭学报》2011,36(12):2086-2091
为了测定温度、含水率对切削原煤吸附特性的影响,针对之前煤对瓦斯吸附性研究的不足,采用屯兰矿的焦煤、屯留矿的贫煤并经煤岩钻样机切削加工成100 mm×150 mm的圆柱形块状原煤,根据实验结果及相关理论采用Langmuir单分子层吸附模型进行结果分析。实验从等温条件下测定两种煤的吸附常数入手,之后调节至不同的温度和不同的含水率,测得吸附常数 a、 b 分别随温度、含水率变化的关系式。结果表明:温度对吸附性的影响只取决于吸附常数 a 的变化,而含水率与 b 有关;在实验所研究的温度梯度内,得到吸附常数 a 随温度的变化呈线性衰减的趋势;在干燥到饱和含水的范围内,得出吸附常数 b 随含水率的变化呈指数衰减的趋势,并说明切削原煤的含水吸附性质与粉煤粒煤是存在差异的。  相似文献   

14.
为研究受载含瓦斯煤岩流变过程中的渗流规律和煤体瓦斯吸附解吸特性,自主研制了煤岩三轴蠕变-渗流-吸附解吸实验装置,该装置主要由主机、伺服加载系统、三轴压力室、孔压控制系统、吸附解吸系统、温度控制系统、变形测量系统以及安全防护系统等8个部分组成,其最大轴压为500 kN、最大围压为50 MPa、最高加热稳定温度为90 ℃,试件尺寸为50 mm×100 mm。该装置具有以下主要优势:能实现煤岩孔隙率的测试、煤岩力学参数测试、煤岩瓦斯吸附解吸实验和受载含瓦斯煤的蠕变-渗流等多种实验,功能强大、性能稳定、测试准确;采用了滚珠丝杠加载方式,满足了蠕变-渗流等实验的长期加载需求,最长加载时间能达2个月以上;配备了高低温控制系统,能实现煤岩试样进气端、出气端和三轴压力室3处的气体温度保持一致,有效避免了温度变化所导致的气体流量上的测量误差。同时利用该装置分别开展了煤样孔隙率测试、受载含瓦斯煤样解吸特性和含瓦斯煤样的蠕变-渗流实验研究,实验验证了该装置在功能上的多样性和在测试上的准确性和可靠性。  相似文献   

15.
为了更好地将震动波CT技术运用于煤与瓦斯突出灾害监测中,搭建了含气体突出煤岩三轴压缩波速测试系统,实验室研究了含气体煤岩所受轴压、围压和所通入的气压大小与波速之间的耦合关系,并建立了波速与各应力的数学模型。研究表明:当试样载荷不变时,随着通入气压的增大,纵波波速在开始会剧烈下降,随后趋于稳定,呈线性负相关;当围压和气压条件不变时,试样在开始受到轴压后,波速迅速增大,随后波速变化趋于平缓,接近线性增长,呈指数函数关系;当气压和围压条件不变时,试样的纵波波速会随着围压的增加而均匀增加,呈线性正相关;3种试验结果所拟合出来的数学模型均具有较高的相关性。  相似文献   

16.
CO2/CH4在狭缝型孔内竞争吸附的分子模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
采用巨正则系综蒙特卡洛(GCMC)方法研究了储层温度、压力条件以及CO2/CH4混合气中CO2摩尔分数对煤中狭缝型孔分离CO2/CH4的影响。气体分子之间作用均采用单点Lennard-Jones(LJ)模型,气体分子与孔壁之间的作用势则用Steele 10-4-3模型描述。研究结果表明:CO2相对CH4的平衡分离系数SCO2/CH4最初都是随着压力的增加而增加,直到达到峰值,然后随着压力的增加而减小,在20 MPa时趋于恒定;压力低于20 MPa时,SCO2/CH4随着温度的增加而增加,压力高于20 MPa后,SCO2/CH4对于温度的变化不敏感; 压力为10、20 MPa时,SCO2/CH4先是随着CO2摩尔分数的增加而增加,直到达到最大值,而后随着CO2摩尔分数的增加而减少。因此,在现场实施CO2不可采煤层封存时,需要综合考虑各种因素对于CO2/CH4二元吸附的影响,对实际操作条件进行优化。  相似文献   

17.
祝捷  唐俊  王琪  王全启  张博  张犇 《煤炭学报》2019,44(6):1764-1770
与气体压力有关的煤层渗透率变化规律是煤矿开采和煤层气开发过程中的重要问题,不同应力条件下,不同类型煤样的渗透率演化特征不同。为了研究瓦斯压力变化过程中煤样渗透性的变化规律,以开滦赵各庄煤矿9号煤层的煤样为研究对象,利用含瓦斯煤热-流-固耦合三轴伺服渗流装置,在恒定温度、轴压和围压,降低瓦斯压力的实验条件下测定了煤样应变和瓦斯渗透率。实验结果表明:随着瓦斯压力的降低,煤样收缩应变加剧,渗透率表现为两种变化趋势:逐渐增大和先减小后增大(渗透率回升对应的瓦斯压力小于1. 0 MPa)。瓦斯压力降低至0. 3 MPa时,渗透率为初始条件下(瓦斯压力2. 0 MPa)渗透率的1. 9~2. 9倍。考虑到煤样在径向和轴向的收缩应变数值接近,针对三维变形煤样建立了渗透率模型,模型同时体现了气体压力和气体解吸对渗透率的影响。理论分析表明,降压过程中煤的渗透率将在某一气体压力(反弹气体压力pr)时由降低转为升高。推导的反弹气体压力pr计算公式显示pr的取值由煤样的体积模量K、与吸附效应有关的Langmuir系数εp和pL共同决定;体积模量K与吸附变形系数εp越大,pr越大。值得注意的是,pr的取值与煤样的外部应力以及内部的气体压力无关。结合本文和前人的实验数据,由本文的渗透率模型计算得到了不同应力和瓦斯压力条件下的煤样渗透率变化曲线以及相应的反弹气体压力pr。模型计算结果与实验数据接近,最大相对误差低于8. 9%。研究表明,实验测得煤样的渗透率表现为何种变化趋势,取决于反弹气体压力pr和实验气体压力的关系。当pr≥pmax(实验测点中最大的气体压力值)时,渗透率随着气体压力增大而降低;当pr≤pmin(实验测点中最小的气体压力值)时,渗透率随着气体压力增大而增大;当pminprpmax时,随瓦斯压力的增大,煤样渗透率呈"V"形变化,即先减小后增大。  相似文献   

18.
吸附气体对突出煤渗流特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
姜德义  袁曦  陈结  蒋翔  范金洋  任松  李林 《煤炭学报》2015,40(9):2091-2096
煤层中瓦斯渗流特性不仅受地应力、煤孔隙结构等因素的影响,还因气体吸附而发生变化。以重庆市万盛区某煤矿突出煤层原煤为实验对象,在有效轴向应力和有效围压为1 MPa条件下,利用自制的三轴渗流试验机研究突出煤吸附二氧化碳、甲烷气体对渗流特性的影响。结果表明:1突出原煤吸附-渗流过程具有明显的阶段特征,煤体变形经历了初始快速变形阶段、缓慢变形发展阶段、变形稳定阶段、收缩变形阶段和渗流稳定阶段;2气体压力越大,煤体膨胀变形越大,相同气体压力下,煤体吸附二氧化碳变形增量大于吸附甲烷变形增量;3随着气体压力的增大,气体渗流速度逐渐增大,呈显著的指数函数关系,突出煤渗透率先减小后增大,具有明显的阶段性。  相似文献   

19.
甲烷在页岩中的吸附同时受页岩本体物理性质和外部储存条件的综合影响,为了建立考虑多种因素影响的页岩气吸附模型,以川东南五峰组—龙马溪组页岩为例,开展了不同总有机碳含量(TOC含量)的页岩在多个不同温度、不同含水率下对甲烷的吸附实验,采用Langmuir吸附模型对吸附数据进行了拟合,分析了饱和吸附量及Langmuir压力分别与温度、TOC含量及含水率的定量关系,最终建立了考虑温度、压力、TOC含量及含水率综合影响的多因素页岩气吸附模型,并通过与实测吸附数据对比验证了该模型的准确性。结果表明:Langmuir模型能很好的拟合五峰组—龙马溪组页岩在不同特定条件下的吸附数据,拟合精度较高,决定系数R2介于0.9728~0.9982。饱和吸附量与TOC含量呈正线性相关,与温度及含水率呈线性负相关。Langmuir压力与TOC含量呈线性负相关,与温度及含水率呈线性正相关。30℃下TOC含量为4.17%的页岩干样吸附量比TOC含量为2.95%的页岩干样吸附量高约39%。当温度由30℃增至80℃时,TOC含量为4.17%的页岩干样其饱和吸附量降低约30.6%。对于TOC含量为3.66%的含水页岩,当含水率由0增至4.2%时,30℃和60℃下页岩气的饱和吸附量分别降低了23.1%和11.4%。基于Langmuir模型建立的考虑多因素的吸附模型能准确的计算不同TOC含量、不同温度及不同含水情况下的页岩气吸附量。经与2组实测吸附数据对比验证,整个实验压力范围内的相对误差均小于6%,平均误差分别为3.67%和2.48%。经采用其他文献中不同物性的页岩吸附数据验证,表明多因素吸附模型对不同页岩有很好的适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号