首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a compressed domain video watermarking scheme is proposed which embeds the watermark in the homogeneous moving object within a shot of video sequence to resist geometric attacks such as rotation, scaling etc. Intuitively, object based watermarking results low payload and has the least impact on visual quality since the object area is generally small and highly textured. The proposed work has two main contributions, firstly, an existing compressed domain motion coherent block detection algorithm [7] is extended to detect the moving objects within a video shot and secondly, a watermarking scheme has been proposed by embedding within the moving objects to resist RST attacks. A comprehensive set of experiments has been carried out to justify the applicability of the proposed scheme over the existing literature.  相似文献   

2.
Some numerical algorithms for elliptic eigenvalue problems are proposed, analyzed, and numerically tested. The methods combine advantages of the two-grid algorithm (Xu and Zhou in Math Comput 70(233):17–25, 2001), the two-space method (Racheva and Andreev in Comput Methods Appl Math 2:171–185, 2002), the shifted inverse power method (Hu and Cheng in Math Comput 80:1287–1301, 2011; Yang and Bi in SIAM J Numer Anal 49:1602–1624, 2011), and the polynomial preserving recovery enhancing technique (Naga et al. in SIAM J Sci Comput 28:1289–1300, 2006). Our new algorithms compare favorably with some existing methods and enjoy superconvergence property.  相似文献   

3.
Flutter shutter (coded exposure) cameras allow to extend indefinitely the exposure time for uniform motion blurs. Recently, Tendero et al. (SIAM J Imaging Sci 6(2):813–847, 2013) proved that for a fixed known velocity v the gain of a flutter shutter in terms of root means square error (RMSE) cannot exceeds a 1.1717 factor compared to an optimal snapshot. The aforementioned bound is optimal in the sense that this 1.1717 factor can be attained. However, this disheartening bound is in direct contradiction with the recent results by Cossairt et al. (IEEE Trans Image Process 22(2), 447–458, 2013). Our first goal in this paper is to resolve mathematically this discrepancy. An interesting question was raised by the authors of reference (IEEE Trans Image Process 22(2), 447–458, 2013). They state that the “gain for computational imaging is significant only when the average signal level J is considerably smaller than the read noise variance \(\sigma _r^2\)” (Cossairt et al., IEEE Trans Image Process 22(2), 447–458, 2013, p. 5). In other words, according to Cossairt et al. (IEEE Trans Image Process 22(2), 447–458, 2013) a flutter shutter would be more efficient when used in low light conditions e.g., indoor scenes or at night. Our second goal is to prove that this statement is based on an incomplete camera model and that a complete mathematical model disproves it. To do so we propose a general flutter shutter camera model that includes photonic, thermal (The amplifier noise may also be mentioned as another source of background noise, which can be included w.l.o.g. in the thermal noise) and additive [The additive (sensor readout) noise may contain other components such as reset noise and quantization noise. We include them w.l.o.g. in the readout.] (sensor readout, quantification) noises of finite variances. Our analysis provides exact formulae for the mean square error of the final deconvolved image. It also allows us to confirm that the gain in terms of RMSE of any flutter shutter camera is bounded from above by 1.1776 when compared to an optimal snapshot. The bound is uniform with respect to the observation conditions and applies for any fixed known velocity. Incidentally, the proposed formalism and its consequences also apply to e.g., the Levin et al. motion-invariant photography (ACM Trans Graphics (TOG), 27(3):71:1–71:9, 2008; Method and apparatus for motion invariant imag- ing, October 1 2009. US Patent 20,090,244,300, 2009) and variant (Cho et al. Motion blur removal with orthogonal parabolic exposures, 2010). In short, we bring mathematical proofs to the effect of contradicting the claims of Cossairt et al. (IEEE Trans Image Process 22(2), 447–458, 2013). Lastly, this paper permits to point out the kind of optimization needed if one wants to turn the flutter shutter into a useful imaging tool.  相似文献   

4.
5.
This paper addresses robust and ultrafast pose tracking on mobile devices, such as smartphones and small drones. Existing methods, relying on either vision analysis or inertial sensing, are either too computational heavy to achieve real-time performance on a mobile platform, or not sufficiently robust to address unique challenges in mobile scenarios, including rapid camera motions, long exposure time of mobile cameras, etc. This paper presents a novel hybrid tracking system which utilizes on-device inertial sensors to greatly accelerate the visual feature tracking process and improve its robustness. In particular, our system adaptively resizes each video frame based on inertial sensor data and applies a highly efficient binary feature matching method to track the object pose in each resized frame with little accuracy degradation. This tracking result is revised periodically by a model-based feature tracking method (Hare et al. 2012) to reduce accumulated errors. Furthermore, an inertial tracking method and a solution of fusing its results with the feature tracking results are employed to further improve the robustness and efficiency. We first evaluate our hybrid system using a dataset consisting of 16 video clips with synchronized inertial sensing data and then assess its performance in a mobile augmented reality application. Experimental results demonstrated our method’s superior performance to a state-of-the-art feature tracking method (Hare et al. 2012), a direct tracking method (Engel et al. 2014) and the Vuforia SDK (Ibañez and Figueras 2013), and can run at more than 40 Hz on a standard smartphone. We will release the source code with the pubilication of this paper.  相似文献   

6.
Driving saccade to pursuit using image motion   总被引:5,自引:3,他引:2  
Within the context of active vision, scant attention has been paid to the execution of motion saccades—rapid re-adjustments of the direction of gaze to attend to moving objects. In this paper we first develop a methodology for, and give real-time demonstrations of, the use of motion detection and segmentation processes to initiate capture saccades towards a moving object. The saccade is driven by both position and velocity of the moving target under the assumption of constant target velocity, using prediction to overcome the delay introduced by visual processing. We next demonstrate the use of a first order approximation to the segmented motion field to compute bounds on the time-to-contact in the presence of looming motion. If the bound falls below a safe limit, a panic saccade is fired, moving the camera away from the approaching object. We then describe the use of image motion to realize smooth pursuit, tracking using velocity information alone, where the camera is moved so as to null a single constant image motion fitted within a central image region. Finally, we glue together capture saccades with smooth pursuit, thus effecting changes in both what is being attended to and how it is being attended to. To couple the different visual activities of waiting, saccading, pursuing and panicking, we use a finite state machine which provides inherent robustness outside of visual processing and provides a means of making repeated exploration. We demonstrate in repeated trials that the transition from saccadic motion to tracking is more likely to succeed using position and velocity control, than when using position alone.  相似文献   

7.
We present an algorithm for identifying and tracking independently moving rigid objects from optical flow. Some previous attempts at segmentation via optical flow have focused on finding discontinuities in the flow field. While discontinuities do indicate a change in scene depth, they do not in general signal a boundary between two separate objects. The proposed method uses the fact that each independently moving object has a unique epipolar constraint associated with its motion. Thus motion discontinuities based on self-occlusion can be distinguished from those due to separate objects. The use of epipolar geometry allows for the determination of individual motion parameters for each object as well as the recovery of relative depth for each point on the object. The algorithm assumes an affine camera where perspective effects are limited to changes in overall scale. No camera calibration parameters are required. A Kalman filter based approach is used for tracking motion parameters with time  相似文献   

8.
In this paper we investigate the problem of partitioning an input string T in such a way that compressing individually its parts via a base-compressor C gets a compressed output that is shorter than applying C over the entire T at once. This problem was introduced in Buchsbaum et al. (Proc. of 11th ACM-SIAM Symposium on Discrete Algorithms, pp. 175–184, 2000; J. ACM 50(6):825–851, 2003) in the context of table compression, and then further elaborated and extended to strings and trees by Ferragina et al. (J. ACM 52:688–713, 2005; Proc. of 46th IEEE Symposium on Foundations of Computer Science, pp. 184–193, 2005) and Mäkinen and Navarro (Proc. of 14th Symposium on String Processing and Information Retrieval, pp. 229–241, 2007). Unfortunately, the literature offers poor solutions: namely, we know either a cubic-time algorithm for computing the optimal partition based on dynamic programming (Buchsbaum et al. in J. ACM 50(6):825–851, 2003; Giancarlo and Sciortino in Proc. of 14th Symposium on Combinatorial Pattern Matching, pp. 129–143, 2003), or few heuristics that do not guarantee any bounds on the efficacy of their computed partition (Buchsbaum et al. in Proc. of 11th ACM-SIAM Symposium on Discrete Algorithms, pp. 175–184, 2000; J. ACM 50(6):825–851, 2003), or algorithms that are efficient but work in some specific scenarios (such as the Burrows-Wheeler Transform, see e.g. Ferragina et al. in J. ACM 52:688–713, 2005; Mäkinen and Navarro in Proc. of 14th Symposium on String Processing and Information Retrieval, pp. 229–241, 2007) and achieve compression performance that might be worse than the optimal-partitioning by a Ω(log?n/log?log?n) factor. Therefore, computing efficiently the optimal solution is still open (Buchsbaum and Giancarlo in Encyclopedia of Algorithms, pp. 939–942, 2008). In this paper we provide the first algorithm which computes in O(nlog?1+ε n) time and O(n) space, a partition of T whose compressed output is guaranteed to be no more than (1+ε)-worse the optimal one, where ε may be any positive constant fixed in advance. This result holds for any base-compressor C whose compression performance can be bounded in terms of the zero-th or the k-th order empirical entropy of the text T. We will also discuss extensions of our results to BWT-based compressors and to the compression booster of Ferragina et al. (J. ACM 52:688–713, 2005).  相似文献   

9.
In this work, we focus on the problem of feature-based 3D mapping of environments with large textureless regions, which generates sparse 3D maps that may not represent well the mapped scene. To deal with this problem, based on our previous work (Cruz Martinez et al. in 2016 IEEE international symposium on mixed and augmented reality (ISMAR) adjunct proceedings, IEEE, 2016), we propose to enhance sparse 3D maps by using a superpixel-based segmentation with the aim of generating denser 3D maps of the scene in real time. Superpixels are middle-level features, which represent similar regions in an image, which can be connected in order to segment textureless areas. We propose a graphics processor unit architecture for (1) superpixel extraction considering chromatic and depth information, (2) superpixel-based segmentation, generation of connectivity matrix to compute the connected components algorithm and (3) mapping of segmented regions to 3D points. We use the ORB-SLAM system (Mur-Artal et al. in IEEE Trans Robot 31(5):1147–1163, 2015) to generate a sparse 3D map and to project the textureless segments onto it at 27 frames per second. We assessed our approach in terms of segmentation and map quality. Regarding the latter, covered area by the generated map, depth accuracy, and computational performance are reported.  相似文献   

10.
Foreground detection or moving object detection is a fundamental and critical task in video surveillance systems. Background subtraction using Gaussian Mixture Model (GMM) is a widely used approach for foreground detection. Many improvements have been proposed over the original GMM developed by Stauffer and Grimson (IEEE Computer Society conference on computer vision and pattern recognition, vol 2, Los Alamitos, pp 246–252, 1999. doi: 10.1109/CVPR.1999.784637) to accommodate various challenges experienced in video surveillance systems. This paper presents a review of various background subtraction algorithms based on GMM and compares them on the basis of quantitative evaluation metrics. Their performance analysis is also presented to determine the most appropriate background subtraction algorithm for the specific application or scenario of video surveillance systems.  相似文献   

11.
XGC1 and M3D-C 1 are two fusion plasma simulation codes being developed at Princeton Plasma Physics Laboratory. XGC1 uses the particle-in-cell method to simulate gyrokinetic neoclassical physics and turbulence (Chang et al. Phys Plasmas 16(5):056108, 2009; Ku et al. Nucl Fusion 49:115021, 2009; Admas et al. J Phys 180(1):012036, 2009). M3D-\(C^1\) solves the two-fluid resistive magnetohydrodynamic equations with the \(C^1\) finite elements (Jardin J comput phys 200(1):133–152, 2004; Jardin et al. J comput Phys 226(2):2146–2174, 2007; Ferraro and Jardin J comput Phys 228(20):7742–7770, 2009; Jardin J comput Phys 231(3):832–838, 2012; Jardin et al. Comput Sci Discov 5(1):014002, 2012; Ferraro et al. Sci Discov Adv Comput, 2012; Ferraro et al. International sherwood fusion theory conference, 2014). This paper presents the software tools and libraries that were combined to form the geometry and automatic meshing procedures for these codes. Specific consideration has been given to satisfy the mesh configuration and element shape quality constraints of XGC1 and M3D-\(C^1\).  相似文献   

12.
In this paper, we study direct discontinuous Galerkin method (Liu and Yan in SIAM J Numer Anal 47(1):475–698, 2009) and its variations (Liu and Yan in Commun Comput Phys 8(3):541–564, 2010; Vidden and Yan in J Comput Math 31(6):638–662, 2013; Yan in J Sci Comput 54(2–3):663–683, 2013) for 2nd order elliptic problems. A priori error estimate under energy norm is established for all four methods. Optimal error estimate under \(L^2\) norm is obtained for DDG method with interface correction (Liu and Yan in Commun Comput Phys 8(3):541–564, 2010) and symmetric DDG method (Vidden and Yan in J Comput Math 31(6):638–662, 2013). A series of numerical examples are carried out to illustrate the accuracy and capability of the schemes. Numerically we obtain optimal \((k+1)\)th order convergence for DDG method with interface correction and symmetric DDG method on nonuniform and unstructured triangular meshes. An interface problem with discontinuous diffusion coefficients is investigated and optimal \((k+1)\)th order accuracy is obtained. Peak solutions with sharp transitions are captured well. Highly oscillatory wave solutions of Helmholz equation are well resolved.  相似文献   

13.
Several philosophical issues in connection with computer simulations rely on the assumption that results of simulations are trustworthy. Examples of these include the debate on the experimental role of computer simulations (Parker in Synthese 169(3):483–496, 2009; Morrison in Philos Stud 143(1):33–57, 2009), the nature of computer data (Barberousse and Vorms, in: Durán, Arnold (eds) Computer simulations and the changing face of scientific experimentation, Cambridge Scholars Publishing, Barcelona, 2013; Humphreys, in: Durán, Arnold (eds) Computer simulations and the changing face of scientific experimentation, Cambridge Scholars Publishing, Barcelona, 2013), and the explanatory power of computer simulations (Krohs in Int Stud Philos Sci 22(3):277–292, 2008; Durán in Int Stud Philos Sci 31(1):27–45, 2017). The aim of this article is to show that these authors are right in assuming that results of computer simulations are to be trusted when computer simulations are reliable processes. After a short reconstruction of the problem of epistemic opacity, the article elaborates extensively on computational reliabilism, a specified form of process reliabilism with computer simulations located at the center. The article ends with a discussion of four sources for computational reliabilism, namely, verification and validation, robustness analysis for computer simulations, a history of (un)successful implementations, and the role of expert knowledge in simulations.  相似文献   

14.
R. Lavi and C. Swamy (FOCS 2005, J. ACM 58(6), 25, 2011) introduced a general method for obtaining truthful-in-expectation mechanisms from linear programming based approximation algorithms. Due to the use of the Ellipsoid method, a direct implementation of the method is unlikely to be efficient in practice. We propose to use the much simpler and usually faster multiplicative weights update method instead. The simplification comes at the cost of slightly weaker approximation and truthfulness guarantees.  相似文献   

15.
16.
Social Group is group of interconnected nodes interested in obtaining common content (Scott, in Social network analysis, 2012). Social groups are observed in many networks for example, cellular network assisted Device-to-Device network (Fodor et al., in IEEE Commun Mag 50:170–177, 2012, Lei et al., in Wirel Commun 19:96–104, 2012), hybrid Peer-to-Peer content distribution (Christos Gkantsidis and Miller, in 5th International Workshop on Peer-to-Peer Systems, 2006, Vakali and Pallis, in IEEE Internet Comput 7:68–74, 2003) etc. In this paper, we consider a “Social Group” of networked nodes, seeking a “universe” of data segments for maximizing their individual utilities. Each node in social group has a subset of the universe, and access to an expensive link for downloading data. Nodes can also acquire the universe by exchanging copies of data segments among themselves, at low cost, using inter-node links. While exchanges over inter-node links ensure minimum or negligible cost, some nodes in the group try to exploit the system by indulging in collusion, identity fraud etc. We term such nodes as ‘non-reciprocating nodes’ and prohibit such behavior by proposing the “Give-and-Take” criterion, where exchange is allowed iff each participating node provides at least one segment to the node which is unavailable with the node. While complying with this criterion, each node wants to maximize its utility, which depends on the node’s segment set available with the node. Link activation between pair of nodes requires mutual consent of the participating nodes. Each node tries to find a pairing partner by preferentially exploring nodes for link formation. Unpaired nodes download data segments using the expensive link with pre-defined probability (defined as segment aggressiveness probability). We present various linear complexity decentralized algorithms based on the Stable Roommates Problem that can be used by nodes for choosing the best strategy based on available information. We present a decentralized randomized algorithm that is asymptotically optimal in the number of nodes. We define Price of Choice for benchmarking the performance of social groups consisting of non-aggressive nodes (i.e. nodes not downloading data segments from the expensive link) only. We evaluate performances of various algorithms and characterize the behavioral regime that will yield best results for nodes and social groups, spending the least on the expensive link. The proposed algorithms are compared with the optimal. We find that the Link For Sure algorithm performs nearly optimally.  相似文献   

17.
提出一种摄像机运动下的运动目标检测技术。首先获取相邻两帧图像上的对应特征点的坐标后应用到仿射变换模型得到全局运动参量来描述背景图像的运动变化。然后根据估计出的全局运动参量通过双线性内插法完成背景匹配。最后采用背景匹配后的两帧图像差进行目标检测。实验证明本算法在提高处理的精确度和时效性的同时还可以处理摄像机发生较大幅度旋转运动情况下的目标检测。  相似文献   

18.
We study a recommendation system problem, in which the system must be able to cover as many users’ preferences as possible while these preferences change over time. This problem can be formulated as a variation of the maximum coverage problem; specifically we introduced a novel problem of Online k-Hitting Set, where the number of sets and elements within the sets can change dynamically. When the number of distinctive elements is large, an exhaustive search for even a fixed number of elements is known to be computationally expensive. Even the static problem is known to be NP-hard (Hochba, ACM SIGACT News 28(2):40–52, 1997) and many known algorithms tend to have exponential growth in complexity. We propose a novel graph based UCB1 algorithm that effectively minimizes the number of elements to consider, thereby reducing the search space greatly. The algorithm utilizes a new rewarding scheme to choose items that satisfy more users by balancing coverage and diversity as it construct a relational graph between items to recommend. Experiments show that the new graph based algorithm performs better than existing techniques such as Ranked Bandit (Radlinski et al. 2008) and Independent Bandits (Kohli et al. 2013) in terms of satisfying diverse types of users while minimizing computational complexity.  相似文献   

19.
The objective of this paper is to focus on one of the “building blocks” of additive manufacturing technologies, namely selective laser-processing of particle-functionalized materials. Following a series of work in Zohdi (Int J Numer Methods Eng 53:1511–1532, 2002; Philos Trans R Soc Math Phys Eng Sci 361(1806):1021–1043, 2003; Comput Methods Appl Mech Eng 193(6–8):679–699, 2004; Comput Methods Appl Mech Eng 196:3927–3950, 2007; Int J Numer Methods Eng 76:1250–1279, 2008; Comput Methods Appl Mech Eng 199:79–101, 2010; Arch Comput Methods Eng 1–17. doi: 10.1007/s11831-013-9092-6, 2013; Comput Mech Eng Sci 98(3):261–277, 2014; Comput Mech 54:171–191, 2014; J Manuf Sci Eng ASME doi: 10.1115/1.4029327, 2015; CIRP J Manuf Sci Technol 10:77–83, 2015; Comput Mech 56:613–630, 2015; Introduction to computational micromechanics. Springer, Berlin, 2008; Introduction to the modeling and simulation of particulate flows. SIAM (Society for Industrial and Applied Mathematics), Philadelphia, 2007; Electromagnetic properties of multiphase dielectrics: a primer on modeling, theory and computation. Springer, Berlin, 2012), a laser-penetration model, in conjunction with a Finite Difference Time Domain Method using an immersed microstructure method, is developed. Because optical, thermal and mechanical multifield coupling is present, a recursive, staggered, temporally-adaptive scheme is developed to resolve the internal microstructural fields. The time step adaptation allows the numerical scheme to iteratively resolve the changing physical fields by refining the time-steps during phases of the process when the system is undergoing large changes on a relatively small time-scale and can also enlarge the time-steps when the processes are relatively slow. The spatial discretization grids are uniform and dense enough to capture fine-scale changes in the fields. The microstructure is embedded into the spatial discretization and the regular grid allows one to generate a matrix-free iterative formulation which is amenable to rapid computation, with minimal memory requirements, making it ideal for laptop computation. Numerical examples are provided to illustrate the modeling and simulation approach, which by design, is straightforward to computationally implement, in order to be easily utilized by researchers in the field. More advanced conduction models, based on thermal-relaxation, which are a key feature of fast-pulsing laser technologies, are also discussed.  相似文献   

20.
Intuitionistic fuzzy set is capable of handling uncertainty with counterpart falsities which exist in nature. Proximity measure is a convenient way to demonstrate impractical significance of values of memberships in the intuitionistic fuzzy set. However, the related works of Pappis (Fuzzy Sets Syst 39(1):111–115, 1991), Hong and Hwang (Fuzzy Sets Syst 66(3):383–386, 1994), Virant (2000) and Cai (IEEE Trans Fuzzy Syst 9(5):738–750, 2001) did not model the measure in the context of the intuitionistic fuzzy set but in the Zadeh’s fuzzy set instead. In this paper, we examine this problem and propose new notions of δ-equalities for the intuitionistic fuzzy set and δ-equalities for intuitionistic fuzzy relations. Two fuzzy sets are said to be δ-equal if they are equal to an extent of δ. The applications of δ-equalities are important to fuzzy statistics and fuzzy reasoning. Several characteristics of δ-equalities that were not discussed in the previous works are also investigated. We apply the δ-equalities to the application of medical diagnosis to investigate a patient’s diseases from symptoms. The idea is using δ-equalities for intuitionistic fuzzy relations to find groups of intuitionistic fuzzified set with certain equality or similar degrees then combining them. Numerical examples are given to illustrate validity of the proposed algorithm. Further, we conduct experiments on real medical datasets to check the efficiency and applicability on real-world problems. The results obtained are also better in comparison with 10 existing diagnosis methods namely De et al. (Fuzzy Sets Syst 117:209–213, 2001), Samuel and Balamurugan (Appl Math Sci 6(35):1741–1746, 2012), Szmidt and Kacprzyk (2004), Zhang et al. (Procedia Eng 29:4336–4342, 2012), Hung and Yang (Pattern Recogn Lett 25:1603–1611, 2004), Wang and Xin (Pattern Recogn Lett 26:2063–2069, 2005), Vlachos and Sergiadis (Pattern Recogn Lett 28(2):197–206, 2007), Zhang and Jiang (Inf Sci 178(6):4184–4191, 2008), Maheshwari and Srivastava (J Appl Anal Comput 6(3):772–789, 2016) and Support Vector Machine (SVM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号