首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To fully disclose potential configurations of parallel mechanisms (PMs) that are performance-comparable to the commercially successful Exechon, a family of one translational two rotational (1T2R) over-constrained Exechon inspired PMs is synthesized through the screw theory. The synthesized PMs are further comparatively analyzed in terms of inverse kinematics, singularity occurrence and reachable workspace based on a unified kinematic model. The kinematic analyses indicate that the inherited overconstraints benefit for eliminating the constraint singularity of all synthesized Exechon inspired PMs and the workspace distribution of an Exechon inspired PM is closely related to its topological arrangement. Based on the kinematic evaluations, a preferred configuration of 2UPR-1RPS PM (‘R’: revolute joint, ‘U’: universal joint, ‘S’: spherical joint, ‘P’: prismatic actuated joint) is selected as a candidate for 1T2R spindle head. A laboratory prototype is fabricated and experimentally tested to verify the feasibility of the type synthesis and the correctness of the kinematic analyses. By integrating the selected PM with a 2-degree of freedom sliding gantry, a full scale prototype of a novel hybrid kinematic machine tool is developed to perform 5-axis machining tasks. The well match between the machined workpiece and its designed shape fully proves the engineering potential of the synthesized PMs that are expected to be employed as the functional module to construct 5-axis serial-parallel hybrid machining devices.  相似文献   

2.
NC tool path generation for 5-axis machining of free formed surfaces   总被引:1,自引:1,他引:0  
This paper presents a tool axis vector approach for machining sculptured surfaces. Such an approach is well suited for highly twisted, rolled, or bent surfaces. The tool paths are generated for a 5-axis milling machine. The proposed approach is based on tilt angle, cutting direction, and a vector normal to the cutting surface. Gouging is avoided by checking the interference between the cutting tool and the part surface. The algorithm also finds maximum path intervals that generate maximum admissible cusp height within the specified tolerance limits. Such an approach minimizes the tool path and machining time. The paper presents an example to illustrate the details of the algorithm.This research was accomplished by funding provided by the Korean Research Foundation under the Faculty Research Abroad Program and by the advice and support of the second author.  相似文献   

3.
Parallel mechanisms (PMs) with two rotational degrees-of-freedom (DOF) and one translational DOF (2R1T) have gained much attention, in view of their good comprehensive performance in the field of machine tools. In this paper, a novel 2R1T 2UPU/SP PM is presented, and a 5-DOF hybrid serial-parallel manipulator is constructed on the basis of this novel PM. First, to better understand typical 2R1T PMs, a type synthesis method in virtue of the inner properties of PMs are investigated; in particular, the construction principles for the 2UPU/SP PM are introduced. Second, as the 2UPU/SP PM belongs to an over-constrained 2R1T PM, the constraint force and torque generated on the moving platform (MP) are analyzed in detail, and the rotational axes of the 2UPU/SP PM are obtained. Third, the kinematics of the 2UPU/SP PM are studied systematically, including position, velocity and acceleration analysis; based on the kinematic model, an inverse dynamic model is established using the virtual work principle method. The analysis of this PM shows that its kinematic and dynamic models are quite simple. To confirm the correctness of the kinematic and dynamic models, numerical simulations are performed. Next, the workspace is drawn using MATLAB and CAD softwares, which makes it possible to visualize it fully. Finally, the dimensional synthesis on the basis of the motion/force transmissibility is analyzed and relatively optimized physical dimensions are obtained. This study will enhance the research applications of PM and establish good theoretical foundations for the application of this novel manipulator.  相似文献   

4.
A kind of serial-parallel hybrid polishing machine tool based on the elastic polishing theory is developed and applied to finish mould surface with using bound abrasives. It mainly consists of parallel mechanism of three dimensional moving platform, serial rotational mechanism of two degrees of freedom and the elastic polishing tool system. The active compliant control and passive conformity of polishing tool are provided by a pneumatic servo system and a spring, respectively. Considering the contradiction between the machining quality and efficiency, the optimization model of process parameters is found according to different machining requirements, namely single objective optimization and multi-objective optimization, which provide a choice of parameters as a basis for the operators in practice. Many polishing experiments are conducted to collect the data samples. The genetic algorithm integrated with artificial neural network is used for researching for the optimal process parameters in term of the various optimization objectives. This research also lays the foundation for further establishing polishing expert system.  相似文献   

5.
This paper presents a new modelling methodology for compensation of the thermal errors on a gantry-type 5-axis CNC machine tool. The method uses a “Grey Neural Network Model with Convolution Integral” (GNNMCI(1, N)), which makes full use of the similarities and complementarity between Grey system models and artificial neural networks (ANNs) to overcome the disadvantage of applying either model in isolation. A Particle Swarm Optimisation (PSO) algorithm is also employed to optimise the proposed Grey neural network. The size of the data pairs is crucial when the generation of data is a costly affair, since the machine downtime necessary to acquire the data is often considered prohibitive. Under such circumstances, optimisation of the number of data pairs used for training is of prime concern for calibrating a physical model or training a black-box model. A Grey Accumulated Generating Operation (AGO), which is a basis of the Grey system theory, is used to transform the original data to a monotonic series of data, which has less randomness than the original series of data. The choice of inputs to the thermal model is a non-trivial decision which is ultimately a compromise between the ability to obtain data that sufficiently correlates with the thermal distortion and the cost of implementation of the necessary feedback sensors. In this study, temperature measurement at key locations was supplemented by direct distortion measurement at accessible locations. This form of data fusion simplifies the modelling process, enhances the accuracy of the system and reduces the overall number of inputs to the model, since otherwise a much larger number of thermal sensors would be required to cover the entire structure. The Z-axis heating test, C-axis heating test, and the combined (helical) movement are considered in this work. The compensation values, calculated by the GNNMCI(1, N) model were sent to the controller for live error compensation. Test results show that a 85% reduction in thermal errors was achieved after compensation.  相似文献   

6.
This paper presents an approach for the trajectory planning of a hybrid machine tool based on vibration error, which aims at determining the optimal location and machining time of a given machining path. Firstly, an elastodynamic model of the hybrid robot is proposed by taking compliance of joints and limbs into account. Then, in order to evaluate vibration error in a typical machining path, two indices, i.e., the mean value and fluctuation of vibration error throughout the whole trajectory are proposed. Based on the Isight platform, sensitivity analysis is conducted. In addition, optimal trajectories are derived when adopting 3–4–5 polynomial and B-splines, respectively. Results show that the machining time and machining angle have important impacts on the mean value and fluctuation of vibration error. Especially, effects of the machining angle on the vibration error cannot be neglected. Comparison shows that adopting B-splines is conductive to decreasing the required torque and power. This paper provides a method on determining optimal machining location quickly for a given path throughout the whole workspace. The proposed method can be applied to trajectory planning of other hybrid robots or parallel kinematic machines.  相似文献   

7.
NC machining of a nonzero genus triangular mesh surface is being more widely confronted than before in the manufacturing field. At present, due to the complexity of geometry computation related to tool path generation, only one path pattern of iso-planar type is adopted in real machining of such surface. To improve significantly 5-axis machining of the nonzero genus mesh surface, it is necessary to develop a more efficient and robust tool path generation method. In this paper, a new method of generating spiral or contour-parallel tool path is proposed, which is inspired by the cylindrical helix or circle which are a set of parallel lines on the rectangular region obtained by unwrapping the cylinder. According to this idea, the effective data structure and algorithm are first designed to transform a nonzero genus surface into a genus-0 surface such that the conformal map method can be used to build the bidirectional mapping between the genus-0 surface and the rectangular region. In this rectangular region, the issues of spiral or contour-parallel tool path generation fall into the category of simple straight path planning. Accordingly, the formula for calculating the parameter increment for the guide line is derived by the difference scheme on the mesh surface and an accuracy improvement method is proposed based on the edge curve interpolation for determining the cutter contact (CC) point. These guarantee that the generated tool path can meet nicely the machining requirement. To improve further the kinematic and dynamic performance of 5-axis machine tool, a method for optimizing tool orientation is also preliminarily investigated. Finally, the experiments are performed to demonstrate the proposed method and show that it can generate nicely the spiral tool path or contour-parallel tool path on the nonzero genus mesh surface and also can guarantee the smooth change of tool orientation.  相似文献   

8.
For 5-axis machining with single point contact, this paper proposes a method to calculate second order approximation of the tool envelope surface by using only one tool position. As we known, the true machining errors are deviations between designed surface and tool envelope surface. But it is impossible to determine the whole shape of the tool envelope surface before all tool positions are obtained. Hence, it is difficult to position the tool individually and consider true errors at the same time. Basic Curvature Equations of Locally Tool Positioning (BCELTP) are presented to solve this problem in some degree. By using them under some special conditions, given one tool position, the local shape (second order approximation) of the tool envelope surface can be calculated precisely at the corresponding cutter contact point. These equations make it convenient to adjust the tool position individually until true errors are reduced in some degree. So, they are useful for optimizing tool positions locally. Finally, some examples are given to verify the correctness and practicability of theory.  相似文献   

9.
10.
Optimization of 5-axis high-speed machining using a surface based approach   总被引:1,自引:0,他引:1  
This paper deals with optimization of 5-axis trajectories in the context of high-speed machining. The objective is to generate tool paths suited to high speed follow-up during machining in order to respect cutting conditions, while ensuring the geometrical conformity of the machined part. For this purpose, the optimization of the tool axis orientations is performed using a surface model for the tool path, which allows integrating kinematical limits of the machine tool as well as classical geometrical constraints. The illustration of the optimization through an example highlights the gain in machining time, thereby demonstrating the feasibility of such an approach.  相似文献   

11.
Many different Parallel kinematic machine architectures have been proposed, but few have actually been used in production environments. The class of machine structures referred to as hybrid parallel kinematic machines have been more successful than most and have been employed in a wide variety of applications. These machines are however still affected by many of the limitations associated with purely parallel structures. One of these is temperature-related error due to thermal expansion of the parallel machine links. This paper proposes and demonstrates a method of compensating for this error. The paper presents details of the method, developed, the development of the required kinematic model and its test and validation using a real production machine, the NEOS Tricept.  相似文献   

12.
Centrifugal impeller is a complex part commonly used in aerospace, energy, and air-conditioning industries. Its manufacture involves multi-axis free form machining, a time consuming and error-prone process. Tool path planning is considered a critical issue in the process but still lacking of systematic solutions. This paper proposes a tool path planning framework for 5-axis machining of centrifugal impeller with split blades. It provides several CAM functions that assist the users to generate collision-free cutter motions with smooth tool orientations. First, the machining process is divided into four operations and the planning tasks of each operation are standardized. Second, the hub surfaces are properly decomposed, re-grouped, and re-parameterized to facilitate calculation of quality tool path with reduced cutter retraction and plunging. Finally, geometric algorithms are developed to automatically detect tool collisions and then correct the erroneous tool orientations. An optimization scheme is applied to minimize the total amount of tool posture changes after the correction. An impeller is machined with the NC codes generated from the framework. The result shows the effectiveness of this work in automating the tool path planning in 5-axis machining of highly intricate impeller.  相似文献   

13.
Generation of collision-free 5-axis tool paths using a haptic surface   总被引:1,自引:0,他引:1  
An intuitive man-machine interface for generating 5-axis tool paths is described in the paper. The system is based on a 5 degree-of-freedom force feedback haptic system, which is used to interface a human with an impenetrable 3D part. In the process of feeling the object, the user ‘teaches’ a milling machine to machine a virtual 3D object. The tool path generation has two phases: recording of access directions at the surface of the object and the post-processing phase. During the recording phase, three functions are carried out simultaneously: first, a fast collision detection algorithm, using hierarchical object representation, to drive the haptic system; second, visual feedback to show the regions that have been accessed by the tool; and third, a system to capture the access directions of the tool as the user touches the object. The post-processing phase involves the use of information generated in the recording phase to generate 5-axis tool paths. First, the access directions at the surface of the part are interpolated; and second, any residual collisions are detected and eliminated. We show the results of the tool path generation for two parts. The system can help an expert user generate, correct and tweak tool paths.  相似文献   

14.
As an innovative and cost-effective method for carrying out multiple-axis CNC machining, -axis CNC machining technique adds an automatic indexing/rotary table with two additional discrete rotations to a regular 3-axis CNC machine, to improve its ability and efficiency for machining complex sculptured parts. In this work, a new tool path generation method to automatically subdivide a complex sculptured surface into a number of easy-to-machine surface patches; identify the favorable machining set-up/orientation for each patch; and generate effective 3-axis CNC tool paths for each patch is introduced. The method and its advantages are illustrated using an example of sculptured surface machining. The work contributes to automated multiple-axis CNC tool path generation for sculptured part machining and forms a foundation for further research.  相似文献   

15.
5-Axis sculptured surface machining is simulated using discrete geometric models of the tool and workpiece to determine the tool contact area, and a discrete mechanistic model to estimate the cutting forces. An extended Z-buffer model represents the workpiece, while a discrete axial slice model represents the cutting tool. Determination of the contact area for a given tool move requires a swept envelope (SWE) of the tool path. The SWE is used to find the intersections of the tool envelope with Z-buffer elements (ZDVs) representing the workpiece. A 3-axis approximation of the 5-axis tool movement is used to simplify the calculations while maintaining a desired level of accuracy. The intersection of the SWE with each ZDV yields segments which are used to find the contact area between the cutter and the workpiece for a given tool path. The contact area is subsequently used with the discrete force model to calculate the vector cutting force acting on the tool.  相似文献   

16.
17.
The design, fabrication and testing of a novel prototype micro-thermophotovoltaic (micro-TPV) system is first described in this paper. The system is made of a SiC emitter, a simple nine-layer dielectric filter and a GaSb photovoltaic cell array. When the flow rate of hydrogen is 4.20 g/h and the H/sub 2//air ratio is 0.9, the micro-TPV system is able to deliver an electrical power output of 1.02 W in a microcombustor of 0.113 cm/sup 3/ in volume. The open-circuit electrical voltage and short-circuit current are 2.28 V and 0.59 A, respectively. This paper makes it possible for us to replace batteries with micro-TPV systems as the power of micro mechanical devices in near future.  相似文献   

18.
Accuracy problem is one of the most challenging issues for the application of parallel robots in manufacturing industry, and kinematic calibration is a feasible approach to solve it. Although lots of researches have brought up a diversity of calibration methods, there are still rooms for the improvement of the accuracy, efficiency and robustness of these calibration effects. In this paper, an improved method for kinematic calibration of a 5-axis parallel machining robot is proposed, which includes a new forward kinematic solution (FKS) based on dual quaternion and a modified error modeling process leading to dimensionless error mapping matrixes (EMMs). On this basis, an iterative identification procedure is schemed, and the kinematics and identification simulations are carried out. The kinematics simulation results show that the proposed FKS has wider convergence range and faster computation speed than Levenberg-Marquardt algorithm, while the identification simulation results show that the residual pose errors with the proposed dimensionless EMMs are lower than that with the conventional EMM in various units. Additionally, the procedure of the full pose measurement with a laser tracker and an auxiliary tool is introduced, and thereby the contrast experiments of kinematic calibration on the prototype are conducted. The experiment results indicate that the residual position and orientation errors based on the dimensionless EMM decrease by 97.67% and 86.85% of the original values, respectively, at least, and by 76.77% and 38.65% of that based on the conventional EMM, respectively, at most. Consequently, it is further confirmed that the proposed calibration method is effective in enhancing the identification accuracy of the geometric errors and improving the positioning accuracy of the studied parallel robot.  相似文献   

19.
This paper highlights the design, electromagnetic analysis, system modelling, set-up fabrication, and finally control of an attraction type lab developed levitation prototype. The objectives of this work are parameters' evaluation, for example, force, inductance, and current-air-gap characteristics using a novel analytical model, electromagnetic results, and practical experiments. The FE model has been built using standard packages. A novel permeance function-based approach is developed for the analytical evaluation of parameters. These are verified by actual experiments too with excellent correlation between the sets of results. Agreement between analytical and practical values also show that the modelling is perfect and reliable which further leads to accurate design, fabrication, and implementation of the controller. A simple but reliable controller has been designed, analyzed, and implemented. The performances have been significantly improved. Finally, the steel object has been successfully and steadily levitated in robust condition.  相似文献   

20.
This paper presents an open-architecture of CNC system and mirror milling technology for a new-type 5-axis hybrid robot named TriMule. The CNC system with dual CPUs is developed first to achieve human-computer interaction and motion control. Then, three key technologies are integrated in the system for improving the control quality, including singularity avoidance, feedforward control considering joint couplings and real-time error compensation by using externally mounted encoders. Based on these control technologies for single robot system, a collaborative machining strategy on the mirror milling system that consists of two TriMule robots is proposed to control the machining wall thickness of large thin-walled structural parts. Experiments on the TriMule robot and mirror milling system verify that the acceptable machining accuracy on the NAS test part and large thin-walled structural part can be ensured by using the developed CNC system and technologies. The root mean square of wall thickness error using the collaborative machining strategy can be 41.67% lower than the case without using the strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号