首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hydrogen is one of the most promising renewable energies that has been observing rapid development over the past years. Recent accidental explosion incidents and the associated damages have demonstrated the importance of hydrogen safety against potential explosions. This article presents a systematic review on hydrogen explosions. Potential explosion scenarios including the existence of impurities and rich-oxygen environment in the production, storage with extreme-high pressure and ultra-low temperature, transportation, and consumption processes are reviewed. Different types of hydrogen-air cloud explosion include expansion and deflagration, detonation, and deflagration-to-detonation transition (DDT). Existing studies on hydrogen explosion covering laboratory and field blasting test, numerical simulation utilizing various computational approaches, and theoretical derivation are reviewed and summarized. CFD modeling is currently one of the main research methods because of its cost effectiveness, though challenges existing in simulation hydrogen-air cloud detonation comparing with testing results. Apart from the properties of hydrogen-air cloud such as concentration, size and heterogeneity, environmental factors such as ignition, ventilation and obstacle are found to strongly influence the loading characteristics of hydrogen-air cloud explosion. Existing prediction approaches for estimating blast loading from hydrogen-air cloud explosion including the TNT equivalent method (TNT-EM), TNO multi-energy method (TNO MEM), and Baker-Strehlow-Tang method (BST) are primarily empirical based. Because of the inherited difference of hydrogen-air cloud from solid explosives and conventional flammable gases, the accuracies of these approaches are still doubtable, which requires further study.  相似文献   

2.
In this paper we present the first exploration of detonation wave propagation dynamics in premixed supersonic flows using a novel rotating detonation engine (RDE) configuration. An RDE with a coupled linear extension, referred to as ρDE, is used to divide detonations traveling radially in the RDE into linearly propagating waves. A tangential propagating wave is directed down a modular tangential linearized extension to the engine for ease of optical diagnostics and hardware configuration investigations. A premixed Mach 2 supersonic linear extension is coupled to the ρDE to investigate the effects of varying crossflow configurations for detonation propagation, particularly the interaction between detonations and supersonic reactive mixtures. Detonation waves are generated at the steady operating frequency of the RDE and visualized using high speed schlieren and broadband OH* chemiluminescence imaging. The stagnation pressure was varied from over- to ideally-expanded supersonic regimes. Experimental analysis of detonation interaction with the supersonic regimes show that the detonation propagates freely in the ideally-expanded regime. Deflagration-to-detonation transition (DDT) occurs in the over-expanded regime. Based on the data collected, the DDT process favors supersonic flow with higher source pressures.  相似文献   

3.
Two-dimensional numerical simulations of deflagration-to-detonation transition (DDT) in hydrogen–air mixtures are presented and compared with experiments. The investigated geometry was a 3 m long square channel. One end was closed and had a single obstacle placed 1 m from the end, and the other end was open to the atmosphere. The mixture was ignited at the closed end. Experiments and simulations showed that DDT occurred within 1 m behind the obstacle. The onset of detonation followed a series of local explosions occurring far behind the leading edge of the flame in a layer of unburned reactants between the flame and the walls. A local explosion was also seen in the experiments, and the pressure records indicated that there may have been more. Furthermore, local explosions were observed in the experiments and simulations which did not detonate. The explosions should have sufficient strength and should explode in a layer of sufficient height to result in a detonation.  相似文献   

4.
As a carbon-free fuel and a hydrogen-energy carrier, ammonia is a potential candidate for future energy utilization. Therefore, in order to promote the application of ammonia in detonation engines and to evaluate the safety of ammonia related industrial process, DDT experiments for ammonia/oxygen mixtures with different ERs were carried out in a large-scale horizontal tube. Moreover, pressure transducers and self-developed temperature sensors were applied to record the overpressure and the instantaneous flame temperature during DDT process. The results show that the DDT process in ammonia/oxygen mixtures contains four stages: Slow propagation stage, Flame and pressure wave acceleration stage, Fast propagation and detonation wave formation stage, Detonation wave self-sustained propagation stage. For stoichiometric ammonia/oxygen mixtures, flame front and the leading shock wave propagate one after another with different velocity, until they closely coupled and propagated together with one steady velocity. At the same time, it is found that an interesting retonation wave propagates backward. The peak overpressure, detonation velocity, and flame temperature of the self-sustained detonation are 2 MPa, 2000 m/s and 3500 K, respectively. With the ER increased from 0.6 to 1.6, the detonation velocities and peak overpressures ranged from 2310 m/s to 2480 m/s and 25.6 bar–28.7 bar, respectively. In addition, the detonation parameters of ammonia were compared with those of methane and hydrogen to evaluate the detonation performance and destructiveness of ammonia.  相似文献   

5.
Velocity fluctuation near the detonation limits   总被引:5,自引:0,他引:5  
In this study, the velocity fluctuation near the detonation limits is investigated experimentally. Five explosive mixtures in five different diameter tubes were used and the choice of the mixtures included those considered as “stable” with regular cellular pattern and “unstable” with highly irregular cellular pattern. Photodiodes spaced at regular intervals along the tube were used to measure the detonation velocity. Piezoelectric transducers were also used to record the pressure profiles. Smoked foils were used to register the cellular detonation structure. Away from the limits, the detonation is found to propagate at a steady velocity throughout the length of the tube and the fluctuations of the local velocity are generally small. For stable mixtures with high argon dilution, the onset of the detonation limits is indicated by an abrupt drop in the detonation velocity to about 0.4VCJ after a short distance of travel. The detonation may continue to propagate at this low velocity before decaying eventually to a deflagration wave. For deflagrations the optical detector sometimes failed to register a signal due to low luminosity of the front. In unstable mixtures, galloping detonations are observed only in small diameter tubes (e.g., = 12.7, 3.2 and 1.5 mm). A large number of fairly reproducible cycles of galloping detonations can be observed in very small diameter tubes. In large diameter tubes (e.g., = 31.7 and 50.8 mm), no galloping detonations are observed in all stable and unstable mixtures. For stable mixtures, no galloping detonations are observed even in small diameter tubes of = 3.2 and 1.5 mm. Smoked foils records show that the cellular detonation structure changes from multi-headed to single-headed spin as the limit is approached. In a galloping detonation cycle, a decay from multi-headed to single-headed detonation is observed. However, the cellular structure vanishes for further decay of the galloping detonation to the low velocity phase of the galloping cycle. Although galloping detonations could be considered to define the boundary for detonation limits, this definition lacks generality since galloping detonations are not always observed in all mixtures and in all tube diameters. Thus the onset of single-headed spin is perhaps the most appropriate criterion of the detonation limits in tubes.  相似文献   

6.
Most studies on blast waves generated by gas explosions have focused on gas explosions occurring in open spaces. However, accidental gas explosions often occur in confined spaces and the blast wave generates from a bursting vessel as a result of an increase in pressure caused by the gas explosion. In this study, blast waves from bursting plastic vessels in which gas explosions occurred are investigated. The flammable mixtures used in the experiments were hydrogen-air mixtures at several equivalence ratios and a stoichiometric methane-air mixture. The overpressures of the blast waves were generated by venting high-pressure gas in the enclosure and volumetric expansion with a combustion reaction. The measured intensities of the blast waves were greater than the calculated values resulting from high-pressure bursting without a combustion reaction. The intensities of the blast waves resulting from the explosions of hydrogen-air mixtures were much greater than those of the methane-air mixture.  相似文献   

7.
Spherical projectiles were launched into detonable mixtures over a wide range of projectile velocities from near to about 1.8 times the Chapman–Jouguet (C–J) velocity. Oblique detonation waves (ODWs) and shock-induced combustions (SICs) stabilized around the projectiles were visualized with high time and high spatial resolutions using the Schlieren technique and a high-speed camera with a 1-μs frame speed. Unsteady wave structures called Straw Hat type structures consisting of a SIC region followed by a C–J ODW were observed near stabilizing criticalities of a C–J ODW, and they were divided into two propagation types, depending on whether the C–J ODW could be stabilized [11], [12], [14]. In the present study, we suggested wave structures of the Straw Hat types based on our examination of dozens of continuous images. Triple points were observed at the intersection of a bow shock, a C–J ODW and a transverse detonation or shock wave when projectile velocities were slightly higher than C–J velocities. Onsets of local explosions in the SIC region for stabilizing the ODW in the Straw Hat type structures have been reported [14]. We observed this stabilizing mechanism by visualizing onsets of periodical local explosions and their transition to spherical detonation waves when the projectile velocity was much higher than the C–J velocity. We also determined stabilizing criticalities using a stoichiometric acetylene-oxygen mixture diluted with argon or krypton in 50% or 75% volumetric fractions, respectively. We found that the stabilizing criticalities did not depend only on the ratio of the projectile diameter and the cell size of the mixture.  相似文献   

8.
A numerical approach has been developed to simulate flame acceleration and deflagration to detonation transition in hydrogen-air mixture. Fully compressible, multidimensional, transient, reactive Navier–Stokes equations are solved with a chemical reaction mechanism which is tuned to simulate different stages of flame propagation and acceleration from a laminar flame to a turbulent flame and subsequent transition from deflagration to detonation. Since the numerical approach must simulate both deflagrations and detonations correctly, it is initially tested to verify the accuracy of the predicted flame temperature and velocity as well as detonation pressure, velocity and cell size. The model is then used to simulate flame acceleration (FA) and transition from deflagration to detonation (DDT) in a 2-D rectangular channel with 0.08 m height and 2 m length which is filled with obstacles to reproduce the experimental results of Teodorczyk et al.The simulations are carried out using two different initial ignition strengths to investigate the effects and the results are evaluated against the observations and measurements of Teodorczyk et al.  相似文献   

9.
《Combustion and Flame》2007,148(1-2):4-47
This paper summarizes a 10-year theoretical and numerical effort to understand the deflagration-to-detonation transition (DDT). To simulate DDT from first principles, it is necessary to resolve the relevant scales ranging from the size of the system to the flame thickness, a range that can cover up to 12 orders of magnitude in real systems. This computational challenge resulted in the development of numerical algorithms for solving coupled partial and ordinary differential equations and a new method for adaptive mesh refinement to deal with multiscale phenomena. Insight into how, when, and where DDT occurs was obtained by analyzing a series of multidimensional numerical simulations of laboratory experiments designed to create a turbulent flame through a series of shock–flame interactions. The simulations showed that these interactions are important for creating the conditions in which DDT can occur. Flames enhance the strength of shocks passing through a turbulent flame brush and generate new shocks. In turn, shock interactions with flames create and drive the turbulence in flames. The turbulent flame itself does not undergo a transition, but it creates conditions in nearby unreacted material that lead to ignition centers, or “hot spots,” which can then produce a detonation through the Zeldovich gradient mechanism involving gradients of reactivity. Obstacles and boundary layers, through their interactions with shocks and flames, help to create environments in which hot spots can develop. Other scenarios producing reactivity gradients that can lead to detonations include flame–flame interactions, turbulent mixing of hot products with reactant gases, and direct shock ignition. Major unresolved questions concern the properties of nonequilibrium, shock-driven turbulence, stochastic properties of ignition events, and the possibility of unconfined DDT.  相似文献   

10.
In the field of explosion accidents and the combustion chamber of propulsion systems, gaseous mixtures are more likely to be highly non-uniform and a detonation usually propagates in a non-homogeneous medium. In this paper, one-dimensional (1D) pulsating detonations propagating in non-homogeneous medium with concentration gradient are studied by direct numerical simulation with a detailed chemistry. It is found that a periodically pulsating detonation can adjust to adapt to the environment with concentration gradient. The superficial concentration gradient can improve survivability of 1D detonation under highly unstable case, widening detonability limit corresponding to equivalence ratio; while the steep concentration gradient will quickly extinguish the detonation. The extend of detonability limit led by the inhomogeneity is reinforced by the presence of transverse wave in 2D detonations. The 2D detonation in the gradient has better viability compared with the 1D due to the coupling interaction of leading shock and transverse wave with the gradient and the transportation of H2 and H along the gradient. This study also demonstrates that the simulations of detonations in the gradient requires detailed chemical mechanism.  相似文献   

11.
To clarify the role played by diffusion in detonation structure, two-dimensional numerical simulations are performed by solving the Navier–Stokes equations and considering the single step Arrhenius kinetic as reaction model. The effect of diffusion on the generation of vortices produced by hydrodynamic instabilities (Richtmyer–Meshkov (RM) and Kelvin Helmholtz (KH) instabilities) is investigated. Mixtures with both low and high activation energies, characterized by their regular and irregular detonation structures, are considered. The computations are performed with resolutions ranging from 25 to 103 cells per half reaction length of the ZND structure. Resolution studies of the Navier–Stokes solution for irregular detonations in moderate activation energy mixtures shows that to capture a proper structure, to be at least in qualitative agreement with experimental observations, resolution more that 300 cells per half reaction length is required. However, in mixtures with low activation energy a resolution of 25 cells per half reaction length gives a reasonable physical structure of the detonation. Results provided by very high resolution for irregular structure detonations reveal that the major effect of diffusion occurs at shear layers and unburned pockets boundaries. Diffusion suppresses the small-scale vortices produced by KH instabilities and decreases the turbulent mixing rate of burned and partly burned gases at shear layers. However, behind the shock front, where less concentration of small-scale vortices exist, the diffusion of heat and mass from neighboring hot regions of burned material to the unreacted gases increases the burning rate of the un-reacted pockets. Comparison of the structure obtained by solving the Euler equations with the solution of the Navier–Stokes equations shows that, the strength of the shock front in Navier–Stokes solution is higher than that in Euler solution. Due to the absence of hydrodynamic instabilities behind the main front of regular structure detonations, the results obtained by solving the Euler equations and Navier–Stokes equations are similar for detonations with regular structure even in high resolution simulations.  相似文献   

12.
In order for fuel cell vehicles to develop a widespread role in society, it is essential that hydrogen refuelling stations become established. For this to happen, there is a need to demonstrate the safety of the refuelling stations. The work described in this paper was carried out to provide experimental information on hydrogen outflow, dispersion and explosion behaviour. In the first phase, homogeneous hydrogen–air mixtures of a known concentration were introduced into an explosion chamber and the resulting flame speed and overpressures were measured. Hydrogen concentration was the dominant factor influencing the flame speed and overpressure. Secondly, high-pressure hydrogen releases were initiated in a storage room to study the accumulation of hydrogen. For a steady release with a constant driving pressure, the hydrogen concentration varied as the inlet airflow changed, depending on the ventilation area of the room, the external wind conditions and also the buoyancy induced flows generated by the accumulating hydrogen. Having obtained this basic data, the realistic dispersion and explosion experiments were executed at full-scale in the hydrogen station model. High-pressure hydrogen was released from 0.8 to 8.0 mm nozzle at the dispenser position and inside the storage room in the full-scale model of the refuelling station. Also the hydrogen releases were ignited to study the overpressures that can be generated by such releases. The results showed that overpressures that were generated following releases at the dispenser location had a clear correlation with the time of ignition, distance from ignition point.  相似文献   

13.
Numerical investigation on detonation wave through U-bend   总被引:1,自引:0,他引:1  
Pulse detonation engine (PDE) is expected for a next-generation propulsion system. PDE is a promising engine that can generates power and thrust by using intermittent detonation. Promotion of deflagration to detonation transition (below DDT) is a key issue to realize this system. PDE has experimentally been investigated, and it was confirmed that detonation tubes with U-shaped bends are useful for fast DDT. However, the mechanism of DDT promotion due to U-bends has not been well clarified. In the present study, the influence of a U-bend on detonation wave propagation is researched with computational fluid dynamics (CFD). The numerical results show that detonation wave disappears once near the U-bend inlet and restarts after passing through it. In addition, it was found that the use of the U-bend with small channel width and curvature radius can induce fast DDT.  相似文献   

14.
The possibility is analysed of a laminar flame accelerating along a cylindrical tube, closed at one end, and inducing a deflagration to detonation transition in a stoichiometric H2/O2 mixture. The pressure and temperature ratios at the ensuing shock wave increase, as do laminar burning velocities, while autoignition delay times decrease. Combined with appreciable elongation of the flame, these enhance the strength of the shock. The conditions necessary for delay times of 0.05, 0.1, 1.0 and 5.0 ms, at an unburned mixture critical Reynolds number of 2300, are computed for different tube diameters. Probable consequences of the different delay times and hot spot reactivity gradients, including detonation, are all considered. The probability of a purely laminar propagation leading to a detonation is marginal. Only when the initial temperature is raised to 375 K, do purely laminar detonations become possible in tubes of between about 0.5 and 1.35 mm diameter.  相似文献   

15.
To pinpoint the relationship between high frequency tangential instability(HFTI) and continuous rotating detonation (CRD), series of H2/Air rotating detonations are experimentally achieved in the hollow chamber with Laval nozzle. The contraction ratio of the nozzle has a significant effect on the detonation. The detonation waves number increases with the increasing of equivalence ratio (ER) or nozzle contraction ratio. Based on its character, a new type of detonation is defined as two dominant peak one wave mode (TDPO). The velocities of detonation waves propagating in this new mode are larger than the Chapman-Jouguet (CJ) theoretic value. On the assumption that the reflection wave is rotated with the detonation wave, this mode is well illustrated. The forming process of two waves is also given. The results show that the appearance of combustion mode is relative to the reflection wave generated at the contraction section of the nozzle. The inner mechanism of the refection wave is illustrated. These works make a foundation to investigate the relationship between rotating detonation and tangential instability.  相似文献   

16.
A numerical approach is developed to simulate detonation propagation, attenuation, failure and re-initiation in hydrogen–air mixture. The aim is to study the condition under which detonations may fail or re-initiate in bifurcated tubes which is important for risk assessment in industrial accidents. A code is developed to solve compressible, multidimensional, transient, reactive Navier–Stokes equations. An Implicit Large Eddy Simulation approach is used to model the turbulence. The code is developed and tested to ensure both deflagrations (when detonation fails) and detonations are simulated correctly. The code can correctly predict the flame properties as well as detonation dynamic parameters. The detonation propagation predictions in bifurcated tubes are validated against the experimental work of Wang et al. [1,2] and found to be in good agreement with experimental observations.  相似文献   

17.
Since hydrogen has wide flammability limit and low ignition energy, it could be easily ignited and be easy for the transition to a detonation, leading to extremely serious impacts in explosion accidents or extremely high combustion effeciency in the propulsion. In the field of explosion accidents and the combustion chamber of propulsion systems, hydrogen mixtures are more likely to be highly non-uniform and a detonation usually propagates in a non-homogeneous medium. The work studies behaviors of detonations in non-homogenous medium by a high-resolution simulations. We widen computational domain and steepen the gradient to weaken the role of transverse wave on cellular detonations propagating in the medium with transverse concentration gradient and to reveal the interaction of longitudinal shock with reaction wave. The results show that characteristics of detonations in nonuniform medium is controlled by coupling role of gradient and confinement. As a domain is sufficient wide, the reflection wave is rather weak so that the detonation takes on galloping propagation, with a single-head mode. As the width is mediate, detonation cell takes on highly irregularity, similar to that of highly unstable detonation. However, in the narrow domain, steepening gradient plays a key role while confinement becomes minor in detonation propagation.  相似文献   

18.
Hydrogen produced from renewable resources is one of the cleanest fuels and could be used to store intermittent solar, wind and other energies. The main concern about using hydrogen is its hazards, such as high storage pressure, wide-range flammability, low mass density, and high diffusion. This study investigated the hazards of compressed hydrogen storage by developing a CFD model to understand the gas dispersion behaviour. The model was validated using the past experimental data and showed a good agreement, which could demonstrate the diffusion characteristics and gas stratification of a buoyant gas. A case study of an accidental release of compressed hydrogen from a storage tank was investigated to evaluate the risk of a hydrogen plant. A mathematical model of the jet spill was used to account for the choking effect from a high-pressure release to ensure the input velocity in CFD simulation is suitable for modelling gas dispersion using verified spatial and temporal scales, then the simulation results were used as inputs of vapour cloud explosions (VCEs) to investigate the potential overpressure effect. It was found the CFD model could predict a more reasonable flammable gas amount in cloud than using the bulk hydrogen release rate. The safety distance based on the overpressure prediction was reduced by 35%. The method proposed in this study can provide more validity for the consequence analysis as part of risk assessment.  相似文献   

19.
Self-organized generation of transverse waves associated with the transverse wave instabilities at a diverging cylindrical detonation front was numerically studied by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. After solution validation, four mechanisms of the transverse wave generation were identified from numerical simulations, and referred to as the concave front focusing, the kinked front evolution, the wrinkled front evolution and the transverse wave merging, respectively. The propagation of the cylindrical detonation is maintained by the growth of the transverse waves that match the rate of increase in surface area of the detonation front to asymptotically approach a constant average number of transverse waves per unit length along the circumference of the detonation front. This cell bifurcation phenomenon of cellular detonations is discussed in detail to gain better understanding on detonation physics.  相似文献   

20.
Direct initiation experiments were carried out in a 105 cm diameter tube to study detonation properties and evaluate the detonability limits for mixtures of natural gas (NG) with air. The natural gas was primarily methane with 1.5–1.7% of ethane. A stoichiometric methane–oxygen mixture contained in a large plastic bag was used as a detonation initiator. Self-supporting detonations with velocities and pressures close to theoretical CJ values were observed in NG–air mixtures containing from 5.3% to 15.6% of NG at atmospheric pressure. These detonability limits are wider than previously measured in smaller channels, and close to the flammability limits. Detonation cell patterns recorded near the limits vary from large cells of the size of the tube to spiral traces of spin detonations. Away from the limits, detonation cell sizes decrease to about 20 cm for 10% NG, and are consistent with existing data for methane–air mixtures obtained in smaller channels. Observed cell patterns are very irregular, and contain secondary cell structures inside primary cells and fine structures inside spin traces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号