首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用格林函数方法和群速近似研究在电场、磁场作用下电子渡越稀磁半导体异质结构的自旋过滤及自旋分离的特征。研究表明具有不同自旋指向的极化电子渡越同一稀磁半导体异质结构 ,不仅隧穿几率存在着显著的差异 ,而且渡越时间的差异可达几个数量级。这种差异随着外磁场的增强而加大 ,而随外电场的增强而减小。结果意味着稀磁半导体异质结构具有很好的自旋过滤效果 ,且极化电子渡越此类结构在时间上是分离的  相似文献   

2.
Magnetic thin film heterostructures have been widely studied for fundamental interests in the emergence of novel phenomena associated with the heterointerface formation as well as their promising practical potential. Combining X‐ray magnetic circular dichroism with scanning tunneling microscopy, it is shown for fcc Fe thin films grown on Cu(001) with Mn overlayers (Mn/Fe thin film heterostructures) that the interfacial factors dominating the electronic and magnetic properties of the entire system dynamically change with the amount of the Mn overlayer. Element specific magnetization curves of the Fe layer exhibit a two‐step spin reorientation transition from out‐of‐plane to in‐plane direction by increasing the Mn coverage. The atomic‐scale characterizations of structural and electronic properties in combination with the first‐principles calculations successfully unravel the roles of the entangled interfacial factors and clarify the driving forces of the transition. The first step of the transition at a low Mn coverage is dominantly induced by the formation of FeMn disordered alloy at the heterointerface, and the electronic hybridization with the interfacial FeMn ordered alloy is dominant as the origin of the second step of the transition at a high Mn coverage.  相似文献   

3.
Manipulating magnetic anisotropy in complex oxide heterostructures has attracted much attention. Here, three interface‐engineering approaches are applied to address two general issues with controlling magnetic anisotropy in the La2/3Sr1/3MnO3 heterostructure. One is the paradox arising from the competition between Mn3d–O2p orbital hybridization and MnO6 crystal field. The other is the interfacial region where the nonuniform Mn? O bond length d and Mn? O? Mn bond angle θ disturb the structural modulation. When the interfacial region is suppressed in the interface‐engineered samples, the lateral magnetic anisotropy energy is increased eighteen times. The d‐mediated anisotropic crystal filed that overwhelms the orbital hybridization causes the lateral symmetry breaking of the Mn 3dx2?y2 orbital, resulting in enhanced magnetic anisotropy. This is different from the classic Jahn–Teller effect where the lateral symmetry is always preserved. Moreover, the quantitative analysis on X‐ray linear dichroism data suggests a direct correlation between Mn 3dx2?y2 orbital symmetry breaking and magnetic anisotropy energy. The findings not only advance the understanding of magnetic anisotropy in manganite heterostructures but also can be extended to other complex oxides and perovskite materials with correlated degrees of freedom.  相似文献   

4.
Sunlight-driven photoreduction of the environmentally mobile uranyl (VI) to less soluble tetravalent uranium is of considerable value to environmental sustainability, yet the pursuit for high-performance semiconductors is plagued by the current disadvantages of inferior charge separation/migration. This study reports that a nickel single atom isolated on a sulfur-functionalized graphitic carbon nitride/reduced graphene oxide 2D heterostructure enables exceptional uranyl photoreduction. Under only 11 min of visible light irradiation, the single atom anchored semiconductor yields a high removal rate of 99.8% and a record-high extraction capacity of 4144 mg g−1 in uranyl-containing wastewater and seawater. Theoretical calculations confirm that the remarkable uranyl photoreduction originates from the synergetic effect of Ni single atoms and intimate heterojunction establishment that can not only promote the separation/migration of photoexcited carriers, but also greatly reduce the energy barrier of uranyl reduction. This study showcases the exciting potential of single atom semiconductors for efficient uranyl removal from uranium-contaminated aqueous environments.  相似文献   

5.
Mixed-dimensional heterostructures formed by the stacking of 2D materials with nanostructures of distinct dimensionality constitute a new class of nanomaterials that offers multifunctionality that goes beyond those of single dimensional systems. An unexplored architecture of single electron transistor (SET) is developed that employs heterostructures made of nanoclusters (0D) grown on a 2D molybdenum disulfide (MoS2) channel. Combining the large Coulomb energy of the nanoclusters with the electronic capabilities of the 2D layer, the concept of 0D–2D vertical SET is unveiled. The MoS2 underneath serves both as a charge tunable channel interconnecting the electrode, and as bottom electrode for each v-SET cell. In addition, its atomic thickness makes it thinner than the Debye screening length, providing electric field transparency functionality that allows for an efficient electric back gate control of the nanoclusters charge state. The Coulomb diamond pattern characteristics of SET are reported, with specific doping dependent nonlinear features arising from the 0D/2D geometry that are elucidated by theoretical modeling. These results hold promise for multifunctional single electron device taking advantage of the versatility of the 2D materials library, with as example envisioned spintronics applications while coupling quantum dots to magnetic 2D material, or to ferroelectric layers for neuromorphic devices.  相似文献   

6.
As a promising candidate for the much-desired low power consumption spintronic devices, 2D magnetic van der Waals material also provides a versatile platform for the design and control of topological spin textures. In this work on WTe2/CrCl3 bilayer van der Waals heterostructures, a complete Néel-type skyrmion–bimeron–ferromagnet phase transition is demonstrated, accompanied by the evolution of the topological number. This cyclic transition, mediated by a perpendicular magnetic field, is largely driven by the competition between the out-of-plane magnetocrystalline anisotropy and magnetic dipole–dipole interaction. In the presence of a driving current, the Néel-type skyrmion gains a higher velocity yet larger skyrmion Hall angle, in comparison to the bimeron. By incorporating a ferroelectric CuInP2S6 monolayer as a substrate, writing and erasing of skyrmions may be regulated using a ferroelectric polarization. This work sheds light on a novel approach to the design and control of magnetic skyrmions on 2D van der Waals materials.  相似文献   

7.
Van der Waals heterostructures (vdWHs) based on 2D layered materials with selectable materials properties pave the way to integration at the atomic scale, which may give rise to fresh heterostructures exhibiting absolutely novel physics and versatility. This feature article reviews the state‐of‐the‐art research activities that focus on the 2D vdWHs and their optoelectronic applications. First, the preparation methods such as mechanical transfer and chemical vapor deposition growth are comprehensively outlined. Then, unique energy band alignments generated in 2D vdWHs are introduced. Furthermore, this feature article focuses on the applications in light‐emitting diodes, photodetectors, and optical modulators based on 2D vdWHs with novel constructions and mechanisms. The recently reported novel constructions of the devices are introduced in three primary aspects: light‐emitting diodes (such as single defect light‐emitting diodes, circularly polarized light emission arising from valley polarization), photodetectors (such as photo‐thermionic, tunneling, electrolyte‐gated, and broadband photodetectors), and optical modulators (such as graphene integrated with silicon technology and graphene/hexagonal boron nitride (hBN) heterostructure), which show promising applications in the next‐generation optoelectronics. Finally, the article provides some conclusions and an outlook on the future development in the field.  相似文献   

8.
Deterministic integration of arbitrary semiconductor heterostructures opens a new class of modern electronics and optoelectronics. However, the realization of such heterostructures continues to suffer from impracticality, requiring energy- and labor-intensive, time-consuming fabrication processes. Here a 3D printing approach to fabricate freestanding metal halide perovskite nanowire heterostructures with a high degree of control over shape and composition is demonstrated. These features arise from freeform guiding of evaporation-driven perovskite crystallization by a femtoliter precursor meniscus formed on a printing nozzle. By using a double-barreled nanopipette as a printing nozzle, “all-at-once” heterostructure fabrication is achieved within seconds. The 3D-printed perovskite nanowire heterojunctions with multiple emission colors provide exciting optical functionalities such as programmable color mixing and encryption at the single nanopixel level. This “lithography-free” additive approach opens up the possibility to freely design and realize heterostructure-based devices without the constraints of traditional manufacturing processes.  相似文献   

9.
The realization of novel heterostructures arising from the combination of nanomaterials is an effective way to modify their physicochemical and electrocatalytic properties, giving them enhanced characteristics stemming from their individual constituents. Interfacing carbon nanohorns (CNHs) possessing high porosity, large specific surface area, and good electrical conductivity, with MoS2 owning multiple electrocatalytic active sites but lacking significant conductivity, robust interactions, and effective structure, can be a strategy to boost the electrocatalytic reduction of protons to molecular hydrogen. Herein, in a stepwise approach, complementary functional groups are covalently introduced at the conical tips and sidewalls of CNHs, along with the basal plane of MoS2, en route the construction of 3D-2D CNH-MoS2 heterostructures. The increased MoS2 loading onto CNHs, improving and facilitating charge delocalization and transfer in neighboring CNHs, along with the plethora of active sites, results in excellent electrocatalytic activity for protons reduction, same as that of commercial Pt/C. Minute overpotential is registered, low Tafel slope and small charge-transfer resistance for electrocatalyzing the evolution of hydrogen from the newly prepared heterostructure of 0.029 V, 71 mV dec−1, and 34.5 Ω, respectively. Furthermore, the stability of the 3D-2D CNH-MoS2 heterostructure is validated after performing 10 000 ongoing electrocatalytic cycles.  相似文献   

10.
The 2D/1D mixed-dimensional van der Waals heterostructures have great potential for electronics and optoelectronics with high performance and multifunctionality. The epitaxy of 1D micro/nanowires on 2D layered materials may efficiently realize the large-scale preparation of 2D/1D heterostructures, which is critically important for their practical applications. So far, however, only the wires of Bi2S3, Te, and Sb2Se3 have been epitaxially grown on MoS2 or WS2. Here, it is reported that the epitaxial growth of 1D CsPbBr3 nanowires on 2D Bi2O2Se nanoplates through a facile vertical vapor deposition method. The CsPbBr3 wires are well aligned on the Bi2O2Se plates in fourfold symmetry with the epitaxial relationships of [001]CsPbBr3||[200]Bi2O2Se and [1-10]CsPbBr3||[020]Bi2O2Se. The photoluminescence results reveal that the emission from CsPbBr3 is significantly quenched in the heterostructure, which implies the charge carriers transfer from CsPbBr3 to Bi2O2Se. The waveguide characterization shows that the epitaxial CsPbBr3 wires may efficiently confine and guide their emission, which favors the light absorption of Bi2O2Se. Importantly, the photocurrent mapping and spectra of the devices based on these 2D/1D heterostructures prove that the epitaxial CsPbBr3 wires remarkably enhances the photoresponse of Bi2O2Se, which indicates these heterostructures can be applied in high-performance optoelectronic devices or on-chip integrated photonic circuits.  相似文献   

11.
碲锌镉晶片的机械化学磨抛分析   总被引:1,自引:0,他引:1  
张梅  黄晖 《红外技术》2008,30(2):111-113
对<111>方向的三块碲锌镉晶片进行了不同的机械磨抛、化学机械抛光、化学抛光,在相同的测量条件下用三维形貌干涉仪进行表面监测.比较了碲锌镉晶片不同的磨抛方法对碲锌镉晶片表面机械损伤的情况,开展了碲锌镉晶片不同的磨抛方法对损伤的去除程度的对比实验,进行了碲锌镉晶片表面粗糙度及平整度实现的研究.  相似文献   

12.
The fabrication of nanometer-sized magnetic heterostructures with controlled magnetic components and specific interfaces holds great significance in the field of electromagnetic (EM) wave absorption. However, the process of achieving these structures still poses significant challenges. Here, abundant magnetic heterostructures are successfully fabricated by utilizing the surface energy anisotropy differences of the nonasymmetric hammer-shaped interface to support the nucleation and growth of magnetic heterostructure components while effectively inhibiting their aggregation. Through a confined growth strategy via in situ growth of FeOOH and sequentially precise thermal treatments, dispersion of the heterostructures is achieved at the nanometer scale, while also observing a high degree of chemical stability due to occurrence of a charge-compensation effect at the interface. Consequently, a series of magnetic heterostructures are obtained via phase translations of FeOOH precursors. The nanometer-sized heterostructures demonstrate multilevel interfacial polarization effects. Furthermore, the hierarchical core–shell structure of the heterostructures promotes anisotropic polarization absorption. As a result, the multiple interfaces and nanometer-sized Fe/Fe3O4@SiO2@Fe-2 heterostructures demonstrate improved EM wave attenuation performance. Remarkably, they achieve an absorption bandwidth of 9 GHz at a thickness of 1.8 mm. A novel avenue is introduced here for investigating the intricate relationship between structure and properties in magnetic heterostructures.  相似文献   

13.
14.
Improving interfacial solar evaporation performance is crucial for the practical application of this technology in solar-driven seawater desalination. Lowering evaporation enthalpy is one of the most promising and effective strategies to significantly improve solar evaporation rate. In this study, a new pathway to lower vaporization enthalpy by introducing heterogeneous interactions between hydrophilic hybrid materials and water molecules is developed. 2D MoN1.2 nanosheets are synthesized and integrated with rGO nanosheets to form stacked MoN1.2-rGO heterostructures with massive junction interfaces for interfacial solar evaporation. Molecular dynamics simulation confirms that atomic thick 2D MoN1.2 and rGO in the MoN1.2-rGO heterostructures simultaneously interact with water molecules, while the interactions are remarkably different. These heterogeneous interactions cause an imbalanced water state, which easily breaks the hydrogen bonds between water molecules, leading to dramatically lowered vaporization enthalpy and improved solar evaporation rate (2.6 kg m−2 h−1). This study provides a promising strategy for designing 2D-2D heterostructures to regulate evaporation enthalpy to improve solar evaporate rate for clean water production.  相似文献   

15.
The spin injection into 2D electron gas (2DEG) in AlN/GaN heterostructures is studied by magneto-transport measurements. An ultrathin AlN layer at the hetero-interface acts as a barrier to form high-quality 2DEG in the triangular quantum well and a tunneling barrier for the spin injection to overcome the conductance mismatch issue. In this study, Hanle signals and inversed Hanle signals are observed, proving that the spin injection is achieved in the 2DEG in the AlN/GaN heterostructure rather than in the interfacial states. The spin-relaxation time in 2DEG at 8 K is found to be as long as 860 ps, which almost keeps constant with bias and decreases with increasing temperature. The spin-relaxation process is illustrated as Rashba spin-orbit coupling dominated D'yakonov Perel’ mechanisms above 8 K. These results show the promising potential of 2DEG in AlN/GaN heterostructures for spin field-effect transistor applications.  相似文献   

16.
Nonvolatile logic devices have attracted intensive research attentions recently for energy efficiency computing, where data computing and storage can be realized in the same device structure. Various approaches have been adopted to build such devices; however, the functionality and versatility are still very limited. Here, 2D van der Waals heterostructures based on direct bandgap materials black phosphorus and rhenium disulfide for the nonvolatile ternary logic operations is demonstrated for the first time with the ultrathin oxide layer from the black phosphorus serving as the charge trapping as well as band‐to‐band tunneling layer. Furthermore, an artificial electronic synapse based on this heterostructure is demonstrated to mimic trilingual synaptic response by changing the input base voltage. Besides, artificial neural network simulation based on the electronic synaptic arrays using the handwritten digits data sets demonstrates a high recognition accuracy of 91.3%. This work provides a path toward realizing multifunctional nonvolatile logic‐in‐memory applications based on novel 2D heterostructures.  相似文献   

17.
系统地研究了氧气氛围中退火温度对Mg掺杂InGaN/GaN异质结电学特性及光学性能的影响.电流电压特性和表面方块电阻的测试表明,与p-GaN相比,p-InGaN/GaN异质结的最佳退火温度较低,而且容易与非合金化的Ni/Au电极形成欧姆接触.分析认为InGaN具有的较小带隙能量和p-InGaN/GaN异质结中存在强烈的极化效应以及InN较高的平衡蒸汽压是引起以上结果的主要原因.p-InGaN/GaN异质结10 K的光致荧光光谱中存在两个分别位于2.95 eV和2.25 eV的发光峰,随着材料退火温度的提高,这两个发光峰的强度逐渐降低.提出了类施主补偿中心参与的与H相关的络合物与Mg受主的复合发光机制,对退火前后光致荧光光谱的变化进行了解释.  相似文献   

18.
2D transition metal dichalcogenides are becoming attractive materials for novel photoelectric and photovoltaic applications due to their excellent optoelectric properties and accessible optical bandgap in the near‐infrared to visible range. Devices utilizing 2D materials integrated with metal nanostructures have recently emerged as efficient schemes for hot electron‐based photodetection. Metal‐semiconductor heterostructures with low cost, simple procedure, and fast response time are crucial for the practical applications of optoelectric devices. In this paper, template‐based sputtering method is used first to fabricate Au nanoantenna (NA)/MoS2 heterostructures with low cost, simple preparation, broad spectral response, and fast response time. Through the measurement of femtosecond pump‐probe spectroscopy, it is demonstrated that plasmon‐induced hot electron transfer takes place in the Au NA/MoS2 heterostructure on the order of 200 fs with an injected electron density of about 5.6 × 1012 cm?2. Moreover, the pump‐power‐dependent photoluminescence spectra confirm that the exciton energy of MoS2 can be enhanced, coupled, and reradiated by the Au NA. Such ultrafast plasmon‐induced hot electron transfer in the metal‐semiconductor heterostructure can enable novel 2D devices for light harvesting and photoelectric conversion.  相似文献   

19.
In recent years, heterostructures formed in transition metal dichalcogenides (TMDs) have attracted significant attention due to their unique physical properties beyond the individual components. Atomically thin TMD heterostructures, such as MoS2‐WS2, MoS2‐MoSe2, MoS2‐WSe2, and WSe2‐WS2, are synthesized so far via chemical vapor deposition (CVD) method. Engineering the morphology of domains including size and shape, however, still remains challenging. Here, a one‐step CVD strategy on the morphology engineering of MoS2 and WS2 domains within the monolayer MoS2‐WS2 lateral heterostructures through controlling the weight ratio of precursors, MoO3 and WO3, as well as tuning the reaction temperature is reported. Not only can the size ratio in terms of area between WS2 and MoS2 domains be easily controlled from less than 1 to more than 20, but also the overall heterostructure size can be tuned from several to hundreds of micrometers. Intriguingly, the quantum well structure, a WS2 stripe embedded in the MoS2 matrix, is also observed in the as‐synthesized heterostructures, offering opportunities to study quantum confinement effects and quantum well applications. This approach paves the way for the large‐scale fabrication of MoS2‐WS2 lateral heterostructures with controllable domain morphology, and shall be readily extended to morphology engineering of other TMD heterostructures.  相似文献   

20.
Transition metal dichalcogenides van der Waals (vdWs) heterostructures present fascinating optical and electronic phenomena, and bear tremendous significance for electronic and optoelectronic applications. As the significant merits in vdWs heterostructures, the interlayer relaxation of excitons and interlayer coupling at the heterointerface reflect the dynamic behavior of charge transfer and the coupled electronic/structural characteristics, respectively, which may give rise to new physics induced by quantum coupling. In this work, upon tuning the photoluminescence (PL) properties of WSe2/graphene and WSe2/MoS2/graphene heterostructures by virtue of electric field, it is demonstrated that the interlayer relaxation of excitons at the heterointerface in WSe2/graphene, which is even stronger than that in MoS2/graphene and WSe2/MoS2 , plays a dominant role in PL tuning in WSe2/graphene, while the carrier population in WSe2 induced by electric field has a minor contribution. In addition, it is discovered that the interlayer coupling between monolayer WSe2 and graphene is enhanced under high electric field, which breaks the momentum conservation of first order Raman‐allowed phonons in graphene, yielding the enhanced Raman scattering of defects in graphene. The interplay between electric field and vdWs heterostructures may provide versatile approaches to tune the intrinsic electronic and optical properties of the heterostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号