首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the consensus problem of multiple 3-DOF laboratory helicopters modeled with system nonlinearity, uncertainty, and actuator faults. The simultaneous additives and partial loss of effectiveness actuator faults are considered. The fault detection hierarchy, the healthy control hierarchy, and the fault-tolerant control hierarchy constitute the hierarchical structure of multihelicopter systems. The fault-tolerant consensus protocol is switched from the healthy control hierarchy once the actuator fault is detected in the fault detection hierarchy. An adaptive fault-tolerant consensus control scheme is developed on the basis of the instantaneous and integral estimations to compensate simultaneously for system nonlinearity, uncertainty, and actuator faults and to guarantee the mean-square consensus in a completely distributed form. Simulation results are presented to validate the effectiveness of the proposed adaptive fault-tolerant consensus control algorithm.  相似文献   

2.
In this article, a fault-tolerant control (FTC) scheme for linear multiagent systems (MASs) subject to time-varying loss of effectiveness and time-varying additive actuator faults as well as external disturbance is investigated. The main objective of the proposed FTC approach is to keep the performance of an MAS after the occurrence of actuator faults similar to the healthy one. The envisaged adaptive virtual actuator for each agent does not require a separate fault detection, isolation, and identification unit nor does it require any information regarding the mission of the MAS. It is shown that the difference between the states of each agent before and after the occurrence of actuator faults can be made arbitrary small and the ultimate bounds of the state error are also obtained. Furthermore, it is shown that for constant actuator faults the state error of each agent converges to zero. Simulation results corresponding to a team of F-8 aircraft and a heterogeneous MAS with the different order demonstrate and illustrate the effectiveness of our proposed FTC scheme.  相似文献   

3.
In this study, for nonrigid spacecraft formation, a distributed adaptive finite‐time actuator fault‐tolerant (FTAFT) coordinated attitude tracking control (CATC) issue is addressed. Aiming at stabilizing the spacecraft formation flying system during a limited time, two distributed adaptive FTAFT CATC strategies are presented. Initially, on basis of distributed finite‐time observer (DFTO), adaptive control, consensus approach, graph theory, and finite‐time theory, we develop a distributed adaptive FTAFT coordinated attitude tracking controller to repress the impact of the external state‐dependent and state‐independent disturbance, unknown time‐varying inertia uncertainty, and actuator fading or fault. Then, combining with the proposed controller, a distributed adaptive FTAFT control law with input saturation subjected to physical limitations of actuator is further designed. In addition, a self‐adjusting matrix (SAM) is proposed to improve the actuators' performance. With the two proposed CATC strategies, the followers can synchronize with the leader. Simulations demonstrated the validity of the designed control laws.  相似文献   

4.
随着微电网信息侧和物理侧的耦合日益紧密,软件密集型控制器和电力电子设备的大规模应用增加了微电网遭受攻击和故障的可能性,从而影响微电网的稳定运行。为此,针对孤岛交流微电网控制通道中潜在的执行器故障和传感器故障,提出了一种基于固定时间一致性算法的分布式容错二次控制策略。首先,建立了同时计及执行器故障和传感器故障的下垂控制模型。其次,分别设计了上层分布式一致性控制算法和下层本地容错控制算法,分析了控制器对未知故障的抑制机理,从理论上证明了所提分布式容错二次控制策略的固定时间收敛特性,并进一步观测了传感器故障信号的波形。最后,算例仿真结果验证了所提控制策略的有效性。  相似文献   

5.
This paper investigates the problem of output feedback adaptive compensation tracking control for linear systems subject to external disturbances and actuator failures including loss of effectiveness faults and bias faults. The impact of actuator faults on the transient performance of systems can be mitigated predicated on the closed-loop reference model with an additional degrees of design freedom. Using the estimation information provided by the adaptive mechanism, an output feedback adaptive fault-tolerant control strategy is developed to track closed-loop reference model systems. It is shown that all the signals of the resulting closed-loop system are bounded. Finally, simulation results are given to demonstrate the effectiveness of the proposed fault-tolerant tracking control method.  相似文献   

6.
This article concerns the estimation and tracking control problems for Takagi–Sugeno systems with disturbances and norm bounded uncertainties in presence of sensor and actuator faults (SAF). First, we propose a robust fuzzy observer (RFO) design method to estimate both state and SAF for the considered class of the nonlinear systems. Then, this RFO-based fault tolerant tracking control is developed not only to compensate the SAF effects but also to ensure the state convergence to desired trajectories in spite of their presence. To reduce the conservatism of design conditions, observer and controller gains are calculated in a single step by solving a set of linear matrix inequality constraints. H criterion is used to attenuate disturbance effects and to reduce the tracking error. Finally, simulation results by considering two types of actuator fault and comparative study on a single link flexible joint manipulator are provided to underline the performances of the mentioned process.  相似文献   

7.
This paper considers the robust adaptive consensus tracking for higher‐order multi‐agent uncertain systems with nonlinear dynamics via distributed intermittent communication protocol. The main contribution of this work is solving the robust consensus tracking problem without the assumption that the topology among followers is strongly connected and fixed. The focus is the problem of actuator with occasional failure inputs and communication resources constraints. A novel distributed intermittent communication framework is proposed via adaptive approach. In this framework, the underlying communication topologies switch among several directed graphs with a limited directed spanning tree rooted at a leader agent. Furthermore, by introducing a strategy of actuator fault compensation inputs, a combination of robust consensus tracking protocol is designed by the different adaptive feedback controllers. It is proved that the robust adaptive consensus tracking can be achieved by using local states information of neighboring agents if the communication retention rate condition is satisfied. Two examples are presented to demonstrate the effectiveness of the proposed approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This article focuses on the decentralized adaptive fuzzy fixed-time fault-tolerant control issue for the error-constrained interconnected nonlinear systems with unknown actuator faults possessing dead zone. The unknown nonlinear functions can be modeled via fuzzy logic systems. By utilizing the parameter estimation method, the effect of unknown actuator faults possessing dead zone can be compensated. To guarantee the predefined dynamic performance of state tracking errors, the barrier Lyapunov functions and prescribed performance functions are introduced. Then, a dual-performance fault-tolerant control method that can guarantee fast transient performance and predefined performance of state tracking errors is proposed via using the decentralized backstepping technique. In addition, on the basis of the Lyapunov stability theory and the fixed-time criterion, it is proved that the predefined performance of full-state errors and the stability of closed-loop systems can be guaranteed. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed control scheme.  相似文献   

9.
An integrated fault estimation/fault-tolerant control (FTC) scheme is developed in this article for nonlinear Lipschitz systems in the presence of external disturbances and actuator failures. To address this problem, coupled uncertainties between the observer error dynamics and the control system are considered, which is conveniently ignored in control approaches based on the separation principle. An H -based adaptive observer is proposed to simultaneously estimate the system states and actuator faults without the restrictive strictly positive realness or persistent excitation conditions. The FTC is constructed by sliding mode control using the estimated states generated by the developed observer. A novel sufficient condition is derived in terms of linear matrix inequality (LMI) including both the system control dynamics and the estimation errors; then, the control parameters and observer gains are simultaneously obtained via solving the mentioned LMI based on the H optimization. Finally, a flexible joint robot is considered to illustrate the effectiveness of the developed method.  相似文献   

10.
In this paper, an actuator fault‐tolerant control (FTC) strategy based on set separation is presented. The proposed scheme employs a standard configuration consisting of a bank of observers which match the different fault situations that can occur in the plant. Each of these observers has an associated estimation error with a distinctive behaviour when a estimator matches the current fault situation of the plant. With this information from each observer, a fault diagnosis and isolation (FDI) module is able to reconfigure the control loop by selecting the appropriate stabilising controller from a bank of precomputed control laws, each of them related to one of the considered fault models. The control law consists of a reference feedforward term and a feedback gain multiplying the state estimate provided by the matching observer. A novel feature of the proposed scheme resides in the decision criteria of the FDI, which is based on the computation of sets towards which the output estimation errors related to each fault scenario and for each control configuration converge. Conditions for the design of the FDI module and for fault tolerant closed‐loop stability are given, and the effectiveness of the approach is illustrated by means of a numerical example. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This article studies the fixed-time time-invariant formation control problem for a class of uncertain nonlinear heterogeneous multi-agent systems (HMASs) with actuator faults and partial unknown control directions. Throughout the formation process, the possibility of actuator faults in systems and unknown control directions between individual agents are taken into account. Lipschitz conditions are introduced to identify the continuous uncertain nonlinear functions. To estimate the agents' local immeasurable states in HMASs, a distributed fixed-time observer is proposed, which can ensure that the states of follower agents are observed in fixed time. In addition, a distributed formation fault-tolerant control scheme will handle actuator faults. By designing a Nussbaum function, the problem of partial unknown control directions for HMASs can be solved in fixed time. Based on the fixed time stability theory, it is proved that the closed-loop stability and the tracking performance can be guaranteed in fixed time, that is, the achieved time is independent of any initial states. In the end, a simulation example is given to testify the effectiveness of the proposed control method.  相似文献   

12.
This study outlines the problem of active fault-tolerant control for delayed discrete-time switched systems. Using switched proportional-integral observer and multiple Lyapunov-Krasovski function, less conservative sufficient conditions are established to design a robust fault estimation (FE) algorithm via linear matrix inequality form. Afterward, a fault-tolerant performance is realized based on this fast and exact FE information to compensate the effect of actuator fault while stabilizing the closed-loop system. The efficiency of the proposed strategy is proved through simulation examples and comparison results.  相似文献   

13.
This work deals with the problem of a model reference tracking based on the design of an active fault tolerant control for linear parameter‐varying systems affected by actuator faults and unknown inputs. Linear parameter‐varying systems are described by a polytopic representation with measurable gain scheduling functions. The main contribution is to design an active fault tolerant controller whose control law is described by an adaptive proportional integral structure. This one requires 3 types of online information, which are reference outputs, measured real outputs, and the fault estimation provided by a model reference, sensors, and an adaptive polytopic observer, respectively. These types of information are used to reconfigure the designed controller, which is able to compensate the fault effects and to make the closed‐loop system able to track reference outputs in spite of the presence of actuator faults and disturbances. The controller and the observer gains are obtained by solving a set of linear matrices inequalities. Performances of the proposed method are compared to another previous method to underline the relevant results.  相似文献   

14.
This article addresses the fully distributed consensus tracking control problem of linear multi‐agent systems with parameter uncertainties. First, a new class of distributed protocol, based on the relative states of neighbors, is proposed. Theoretical analysis indicates that the considered problem can be solved if the control gain constant of the protocol is larger than the norm bound of the leader's nonlinear inputs. Furthermore, a distributed adaptive control protocol is proposed for the case without available global information. The distributed consensus tracking control problem of uncertain linear multi‐agent systems is solved based only on local information under the proposed adaptive protocol. Finally, an application in low‐Earth‐orbit satellite formation flying is provided to illustrate the theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The objective of this paper is to develop a method for fault detection and approximation of linear impulsive systems exposed to actuator faults. Utilizing proposed sliding mode observer, states of the impulsive system are estimated. It is proved that estimation error dynamical system is asymptotically stable between jumps. In addition, an upper bound of the state estimation errors at jump instants has been derived explicitly. State estimations are used to reconstruct the fault signal. Furthermore, an upper bound of the fault estimation errors is obtained. Proficiency of the proposed method is evaluated under different fault scenarios using numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A model-free incremental adaptive fault-tolerant control (FTC) scheme is proposed for a class of nonlinear systems with actuator faults. To deal with actuator faults and guarantee the approximate optimal performance of the nominal nonlinear system without any prior knowledge of system dynamics, a single-network incremental adaptive dynamic programming (SIADP) algorithm based on incremental neural network observer is developed to design an active fault-tolerant control (AFTC) policy. An approximate linear time-varying system is obtained by incremental nonlinear technique, in which the relevant matrix parameters are identified by recursive least square estimation. Then, a SIADP algorithm-based fault-tolerant controller is developed. Based on the redundancy characteristic and function of actuators, a grouping scheme of actuators is introduced. An incremental neural network observer is designed to approximate the actuator faults. The novel SIADP scheme is constructed with a simplified single critic neural network to shorten the learning time and decrease the computational burden in the control process, in which the norm of the weight estimations of critic neural network is updated. Moreover, based on the Lyapunov theorem, the uniformly ultimately bounded stability of the closed-loop incremental system is proved. Finally, simulations are given to verify the effectiveness of the proposed FTC scheme.  相似文献   

17.
针对多无人机编队飞行中的僚机故障问题,设计了一种基于观测器的自适应容错控制方法。首先,基于领导跟随法建立了无人机编队模型及僚机故障的编队模型,并将其划分为位置子系统与偏航角子系统。其次,基于观测器技术对位置子系统中的状态和故障进行观测,并结合观测的状态和故障信息构造状态反馈控制律;然后,基于自适应方法给出偏航角子系统的控制设计方案,并用Lyapunov理论证明系统跟踪误差最终有界收敛。通过仿真,本文算法在发生故障后对系统的完全跟踪时间和稳态误差分别比基于鲁棒故障估计的方法最大降低了76%和70.3%,并且均比传统观测器的方法明显减少较大,证明了本文算法能更好的克服偏差故障带来的不利影响,有效实现四旋翼无人机群的编队飞行。  相似文献   

18.
In the consensus‐based state estimation, multiple neighboring nodes iteratively exchange their local information with each other and the goal is to get more accurate and more convergent state estimation on each node. In order to improve network scalability and fault tolerance, the distributed sensor networks are desirable because the requirements of the fusion node are eliminated. However, the state estimation becomes challenging in the case of limited sensing regions and/or distinct measurement‐noise covariances. A novel distributed average information‐weighted consensus filter (AICF) is proposed, which does not require the knowledge of the total number of sensor nodes. Based on the weighted average consensus, AICF effectively addresses the naivety issues caused by unequal measurement‐noise covariances. Theoretical analysis and experimental verification show that AICF can approach the optimal centralized state estimation.  相似文献   

19.
This paper is concerned with distributed data-driven observer design problem. The existing data-driven observers rely on a common assumption that all the information about the system, and the calculations based upon this information are centralized. Therefore the resulting algorithms cannot be applied to the distributed systems in which each local observer receives only a part of the output signal. On the other hand, traditional model-based distributed state estimation methods generally assume that the processes are decomposed according to the known process models, while in data-driven approaches there is no such information available. The main goal of this paper is to extend the centralized data-driven observer design approach to the distributed framework. The stability of the proposed data-driven distributed observer is also proved analytically. A quadruple-tank process is simulated to demonstrate the performance of the proposed scheme.  相似文献   

20.
In this paper, we develop a new decentralized retrofit adaptive fault‐tolerant control design for a class of nonlinear models arising in flight control. The proposed adaptive fault‐tolerant controller is designed to accommodate loss‐of‐effectiveness (LoE) failures in flight control actuators and achieve accurate estimation of failure‐related parameters. The design is based on local estimation of LoE parameters and generation of local retrofit control signals to accommodate the failures. Using state‐dependent closed‐loop estimation errors, we show the overall system to be stable and demonstrate the tracking error to converge to zero asymptotically for any combination of actuator failures. Through computer simulation of F/A‐18 aircraft under actuator LoE failures, the proposed approach is also shown to achieve better parameter estimation performance compared to the fully centralized design and the design employing local observers and a centralized adaptive controller. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号