共查询到20条相似文献,搜索用时 46 毫秒
1.
复合钙基吸附剂制备成本过高是限制其工业化应用的主要瓶颈问题。本文以不可溶的CaCO3和Ca(OH)2作为钙源,通过燃烧合成法制备钙镁复合吸附剂,在双固定床反应器上研究了其循环捕集CO2性能。结果显示:制备得到的钙镁复合吸附剂具有更发达的孔隙结构,吸附剂表面Ca和Mg分散均匀,MgO均匀分布于CaO晶粒之间,有效提高了钙镁复合吸附剂的抗烧结特性,因此钙镁复合吸附剂循环反应过程中具有高捕集CO2活性。以Ca(OH)2作为钙源时,燃烧合成过程中Ca和Mg均匀同时析出,分散更加均匀,有效避免了CaCO3作为钙源时Mg的团聚问题,因此得到的钙镁复合吸附剂循环捕集CO2性能最优。最佳的Ca/Mg摩尔比为(8∶2)~(7.5∶2.5)。本研究以不可溶钙源制备得到高活性钙镁复合吸附剂,有效控制了吸附剂成本,具有更好的工程应用前景。 相似文献
2.
CO2捕集-转化一体化工艺是实现碳中和的关键负排放技术,而兼具吸附和催化活性的双功能材料(DFMs)构筑是关键。采用挤压法、挤压滚圆法和压片法构筑了柱状、球形和片状的Ni-CaO DFMs,探究了成型方法对Ni-CaO DFMs的结构和CO2吸附-催化一体化性能的影响。研究发现,成型方法会破坏Ni-CaO DFMs的孔隙结构,对其CO2体相扩散和吸附产生不利影响。在首次循环中,Ni-CaO粉体在650℃和体积分数为10%CO2气氛下的吸附容量高达11.77 mmol CO2/g,在体积分数为5%H2气氛下原位逆水煤气变换的CO产量达4.81 mmol CO/g;而成型Ni-CaO DFMs的CO2吸附容量降至9.67~10.33 mmol CO2/g,CO2催化转化率得到明显提升。成型方法有利于提升Ni-CaO DFMs的CO2吸附循环稳定性。在12次循环后,未成型Ni... 相似文献
3.
Xiaoling Ma Hongjie Cui Zhenmin Cheng Zhiming Zhou 《American Institute of Chemical Engineers》2023,69(9):e18146
Integrated CO2 capture and conversion (ICCC) is a promising technology aiming at converting waste CO2 to fuels and high value-added chemicals. Herein, we described a proof-of-concept study of applying engineered natural ores (dolomite, magnesite, and limestone) to two different ICCC processes—intermediate-temperature ICCC for CH4 production (350–400°C) and high-temperature ICCC for syngas production (650–700°C). In the former process, a MgO-based CO2 sorbent prepared from dolomite and magnesite was combined with a methanation catalyst in a dual-bed configuration, whereby a CH4 yield of 7.1–7.3 mmol/g can be stably achieved per cycle over 20 consecutive ICCC cycles. In the latter process, a CaO-based sorbent derived from dolomite and limestone was coupled with a reforming catalyst also in a dual-bed mode, whereby syngas with a H2/CO ratio of 0.9–1.0 can be produced over 20 cycles. This study will expand the application of natural ores in CO2 emission reduction. 相似文献
4.
Zhihong Xu Tao Jiang Hao Zhang Yujun Zhao Xinbin Ma Shengping Wang 《Frontiers of Chemical Science and Engineering》2021,15(3):698
Novel MgO-doped CaO sorbent pellets were prepared by gel-casting and wet impregnation. The effect of Na+ and MgO on the structure and CO2 adsorption performance of CaO sorbent pellets was elucidated. MgO-doped CaO sorbent pellets with the diameter range of 0.5-1.5 mm exhibited an excellent capacity for CO2 adsorption and adsorption rate due to the homogeneous dispersion of MgO in the sorbent pellets and its effects on the physical structure of sorbents. The results show that MgO can effectively inhibit the sintering of CaO and retain the adsorption capacity of sorbents during multiple adsorption-desorption cycles. The presence of mesopores and macropores resulted in appreciable change of volume from CaO (16.7 cm3∙mol−1) to CaCO3 (36.9 cm3∙mol−1) over repeated operation cycles. Ca2Mg1 sorbent pellets exhibited favorable CO2 capture capacity (9.49 mmol∙g−1), average adsorption rate (0.32 mmol∙g−1∙min−1) and conversion rate of CaO (74.83%) after 30 cycles. 相似文献
5.
Ni‐Co bimetallic and Ni or Co monometallic catalysts prepared for CO2 reforming of methane were tested with the stimulated biogas containing steam, CO2, CH4, H2, and CO. A mix of the prepared CO2 reforming catalyst and a commercial steam reforming catalyst was used in hopes of maximizing the CO2 conversion. Both CO2 reforming and steam reforming of CH4 occurred over the prepared Ni‐Co bimetallic and Ni or Co monometallic catalysts when the feed contained steam. However, CO2 reforming did not occur on the commercial steam reforming catalyst. There was a critical steam content limit above which the catalyst facilitated no more CO2 conversion but net CO2 production for steam reforming and water‐gas shift became the dominant reactions in the system. The Ni‐Co bimetallic catalyst can convert more than 70% of CO2 in a biogas feed that contains ~33 mol% of CH4, 21.5 mol% of CO2, 12 mol% of H2O, 3.5 mol% of H2, and 30 mol% of N2. The H2/CO ratio of the produced syngas was in the range of 1.8‐2. X‐ray absorption spectroscopy of the spent catalysts revealed that the metallic sites of Ni‐Co bimetallic, Ni and Co monometallic catalysts after the steam reforming of methane reaction with equimolar feed (CH4:H2O:N2 = 1:1:1) experienced severe oxidation, which led to the catalytic deactivation. 相似文献
6.
The simultaneous CO_2 capture and heat storage performances of the modified carbide slag with by-product of biodiesel were investigated in the process coupled calcium looping and CaO/Ca(OH)_2 thermochemical heat storage using air as the heat transfer fluid. The modified carbide slag with by-product of biodiesel exhibits superior CO_2 capture and heat storage capacities in the coupled calcium looping and heat storage cycles. The hydration conversion and heat storage density of the modified carbide slag after 30 heat storage cycles are 0.65 mol·mol~(-1) and 1.14 GJ·t~(-1), respectively, which are 1.6 times as high as those of calcined carbide slag. The negative effect of CO_2 in air as the heat storage fluid on the heat storage capacity of the modified carbide slag is overcome by introducing CO_2 capture cycles. In addition, the CO_2 capture reactivity of the modified carbide slag after the multiple calcium looping cycles is enhanced by the introduction of heat storage cycles. By introducing 10 heat storage cycles after the 10 th and 15 th CO_2 capture cycles, the CO_2 capture capacities of the modified carbide slag are subsequently improved by 32%and 43%, respectively. The porous and loose structure of modified carbide slag reduces the diffusion resistances of CO_2 and steam in the material in the coupled process. The formed CaCO_3 in the modified carbide slag as a result of air as the heat transfer fluid in heat storage cycles decomposes to regenerate CaO in calcium looping cycles, which improves heat storage capacity. Therefore, the modified carbide slag with by-product of biodiesel seems promising in the coupled calcium looping and CaO/Ca(OH)_2 heat storage cycles. 相似文献
7.
提出了基于CaO的钙循环捕集CO2与CaO/Ca(OH)2体系热化学储热耦合新工艺,在双固定床反应器上,研究了循环捕集CO2中煅烧条件和碳酸化条件对CaO储热性能的影响,探究CaO循环捕集CO2过程和循环水合/脱水储热过程的相互作用。研究表明,多次循环碳酸化/煅烧捕集CO2后CaO仍具有较高储热性能,10次循环捕集CO2后再经10次储热循环,CaO水合转化率可达0.66mol/mol。与苛刻煅烧条件相比,温和煅烧条件下经历多次循环捕集CO2后CaO的储热性能更高。在碳酸化气氛中加入水蒸气对经历多次循环捕集CO2后CaO储热性能的影响不大。钙循环捕集CO2过程和水合/脱水循环储热过程能够相互促进。该工艺有望同时实现CO2捕集和储热,具有一定的应用前景。 相似文献
8.
9.
abstract Calcium looping method has been considered as one of the efficient options to capture CO2 in the combustion flue gas. CaO-based sorbent is the basis for application of calcium looping and shou... 相似文献
10.
11.
利用热重分析仪、扫描电镜和氮吸附仪对不同粒径的K2CO3颗粒和负载型K2CO3/Al2O3二氧化碳吸收剂的碳酸化特性进行研究。负载后的吸收剂比表面积和孔隙结构得到较大改善,使得碳酸化反应速率和转化率均提高,吸收剂碳酸化特性得到改善。纯K2CO3颗粒吸收剂的反应速率和转化率随着粒径的增加而减小,负载型吸收剂的反应速率和转化率随着粒径的增加略增大。研究了不同粒径和反应时间对K2CO3/Al2O3颗粒微观结构的影响,结果表明K2CO3/Al2O3颗粒具有较稳定的微观结构。采用负载型粒子模型对K2CO3/Al2O3吸收剂吸收CO2碳酸化过程进行研究,所建立的粒子模型计算结果与试验值吻合较好。利用建立的模型对不同CO2浓度下K2CO3/Al2O3吸收剂碳酸化反应特性进行模拟计算,模拟结果具备一定的合理性和准确性,为开展进一步研究提供了基础。 相似文献
12.
吸附法是捕集分离CO2等温室气体的重要方法,磁性复合材料能实现气固相快速分离而备受关注。本文利用介质阻挡放电等离子体处理方法,分别对磁性Fe3O4和分子筛前体进行处理,再通过水热法快速制备了Fe3O4/NaA复合材料。利用X射线衍射、红外光谱、扫描电镜和元素扫描等技术进行了表征,并考察了复合材料中Fe3O4/NaA含量比对CO2吸附性能和磁性能的影响。结果显示,当Fe3O4的质量分数为23.2%时,Fe3O4/NaA复合材料既具有优异CO2吸附能力(2.10mmol/g),又具有较好的磁性(25.92emu/g),同时CO2吸附-脱附循环稳定性高,是一种新型磁性CO2吸附剂。在采用流化床吸附捕集CO2技术中,有望实现气固高效磁分离。 相似文献
13.
14.
Chemical solvent in chemical solvent: A class of hybrid materials for effective capture of CO2 下载免费PDF全文
Feng‐Feng Chen Kuan Huang Jie‐Ping Fan Duan‐Jian Tao 《American Institute of Chemical Engineers》2018,64(2):632-639
Amino acid ionic liquids (AAILs) are chemical solvents with high reactivity to CO2. However, they suffer from drastic increase in viscosity on the reaction with CO2, which significantly limits their application in the industrial capture of CO2. In this work, 1‐ethyl‐3‐methylimidazolium acetate ([emim][Ac]) which also exhibits chemical affinity to CO2 but low viscosity, and its viscosity does not increase drastically after CO2 absorption, was proposed as the diluent for AAILs to fabricate hybrid materials. The AAIL+[emim][Ac] hybrids were found to display enhanced kinetics for CO2 absorption, and their viscosity increase after CO2 absorption are much less significant than pure AAILs. More importantly, owing to the fact that [emim][Ac] itself can absorb large amount of CO2, the AAIL+[emim][Ac] hybrids still have high absolute capacities of CO2. Such hybrid materials consisting of a chemical solvent plus another chemical solvent are believed to be a class of effective absorbents for CO2 capture. © 2017 American Institute of Chemical Engineers AIChE J, 64: 632–639, 2018 相似文献
15.
Carbon deposition is sensitive to the metal particle sizes of supported Ni catalysts in CH4/CO2 reforming.To explore the reason of this phenomenon,Ni4,Ni8,and Ni12 which reflect the different cluster thicknesses supported on the MgO(100) slabs,have been employed to simulate Ni/MgO catalysts,and the reaction pathways of CH4/CO2 reforming on Nix/MgO(100) models are investigated by density functional theory.The reforming mechanisms of CH4/CO2 on different Nix/MgO(100) indicate the energy barriers of CH4 dissociated adsorption,CH dissociation,and C oxidation three factors are all declining with the decrease of the Ni cluster sizes.The Hirshfeld charges analyses of three steps as described above show only Ni atoms in bottom two layers can obtain electrons from the MgO supporters,and the main electron transfer occurs between adsorbed species and their directly contacted Ni atoms.Due to more electron-rich Ni atoms in contact with the MgO supporters,the Ni/MgO catalysts with small Ni particles have a strong metal particle size effect and lead to its better catalytic activity. 相似文献
16.
Minglin Xiang Debao Li Haicheng Xiao Jianli Zhang Wenhuai Li Bing Zhong Yuhan Sun 《Catalysis Today》2008,131(1-4):489-495
Nickel and potassium promoted β-Mo2C catalysts were prepared for CO hydrogenation to higher alcohols synthesis. The results revealed that β-Mo2C produced mainly hydrocarbons, but the addition of potassium resulted in a remarkable selectivity shift from hydrocarbons to alcohols over β-Mo2C. Moreover, it was found that potassium enhanced the ability of chain propagation of β-Mo2C catalyst and led to a higher selectivity to C2+OH. The addition of nickel further enhanced higher alcohols synthesis, which showed the optimum at 1/8–1/6 of Ni/Mo molar ratios. The characterization suggested that there might be a synergistic effect of potassium and nickel on β-Mo2C, which favored the alcohols synthesis. The production of alcohols appeared to be relevant to the presence of Mo4+ species, whereas the formation of hydrocarbons was closely associated with Mo2+ and/or Mo0 species on the surface of β-Mo2C-based catalysts. 相似文献
17.
Gongkui Xiao Penny Xiao Andrew Hoadley Paul Webley 《Frontiers of Chemical Science and Engineering》2021,15(3):483
This study explored the feasibility of integrating an adsorption and solvent scrubbing process for post-combustion CO2 capture from a coal-fired power plant. This integrated process has two stages: the first is a vacuum swing adsorption (VSA) process using activated carbon as the adsorbent, and the second stage is a solvent scrubber/stripper system using monoethanolamine (30 wt-%) as the solvent. The results showed that the adsorption process could enrich CO2 in the flue gas from 12 to 50 mol-% with a CO2 recovery of >90%, and the concentrated CO2 stream fed to the solvent scrubber had a significantly lower volumetric flowrate. The increased CO2 concentration and reduced feed flow to the absorption section resulted in significant reduction in the diameter of the solvent absorber, bringing the size of the absorber from uneconomically large to readily achievable domain. In addition, the VSA process could also remove most of the oxygen initially existed in the feed gas, alleviating the downstream corrosion and degradation problems in the absorption section. The findings in this work will reduce the technical risks associated with the state-of-the art solvent absorption technology for CO2 capture and thus accelerate the deployment of such technologies to reduce carbon emissions. 相似文献
18.
19.
20.
Kosan Roh Ali S. Al-Hunaidy Hasan Imran Jay H. Lee 《American Institute of Chemical Engineers》2019,65(7):e16580
This paper introduces a mathematical formulation to identify promising CO2 capture and utilization (CCU) processing paths and assess their production rates by solving an optimization problem. The problem is cast as a multi-objective one by simultaneously maximizing a net profit and life cycle greenhouse gas (GHG) reduction. Three case studies are illustrated using an exemplary CCU processing network. The results indicate the optimal solution is greatly influenced by the scale of CO2 emission source, market demand, and hydrogen availability. Moreover, with the current system of measuring the GHG reduction regarding a business-as-usual level, if the aim is to achieve a GHG reduction within a national boundary, the question of whether CCU plants producing a product of same functionality through conventional means, which the CO2-based product can replace, exists in the country can come into consideration. This systematic identification will assist decision-making regarding future R&D investment and construction of large-scale CCU plants. 相似文献