首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Today, two-dimensional mass spectrometry analysis of biological tissues by means of a technique called mass imaging, mass spectrometry imaging (MSI), or imaging mass spectrometry (IMS) has found application in investigating the distribution of moleculesMSI with matrix-assisted laser desorption/ionization (MALDI) and secondary ion MS (SIMS). However, the size of the matrix crystal and the migration of analytes can decrease the spatial resolution in MALDI, and SIMS can only ionize compounds with relatively low molecular weights. To overcome these problems, we developed a nanoparticle-assisted laser desorption/ionization (nano-PALDI)-based MSI. We used nano-PALDI MSI to visualize lipids and peptides at a resolution of 15 microm in mammalian tissues.  相似文献   

2.
A frozen water matrix, as found in freeze-fractured frozen-hydrated cellular samples, enhances the ionization of phosphatidylcholine lipids with static time-of-flight secondary ion mass spectrometry (TOF-SIMS). Isotopic profiles of the phosphocholine ion from deuterated forms of dipalmitoylphosphatidylcholine (DPPC) have been examined under various sample preparation conditions to show that ionization occurs through protonation from the matrix and is enhanced by the water present in freeze-fractured samples. The ionization of DPPC results in positively charged fragment ions, primarily phosphocholine, with a m/z of 184. Other ions include the M + H ion (m/z 735) and an ion representing the abstraction of the two palmitoyl fatty acid groups (m/z 224). Freeze-fracture techniques have been used to prepare frozen aqueous samples such as liposomes and cells to expose their membranes for static TOF-SIMS imaging. Due to the importance of surface water during SIMS analyses, sources of gas-phase water resulting from freeze-fracture were examined. Under proper fracturing conditions, water vapor, resulting from water in the sample and water condensed onto the outside of the sample, is released into the vacuum but does not condense back onto the surface. Combining the demonstrated enhancement of phosphatidylcholine lipid signal from water with the freeze-fracture preparation techniques described herein demonstrates potential advantages of studying biological samples in a frozen-hydrated state.  相似文献   

3.
Secondary ion mass spectrometry (SIMS) is a desorption/ionization method in which ions are generated by the impact of a primary ion beam on a sample. Classic matrix assisted laser desorption and ionization (MALDI) matrices can be used to increase secondary ion yields and decrease fragmentation in a SIMS experiment, which is referred to as matrix enhanced SIMS (ME-SIMS). Contrary to MALDI, the choice of matrices for ME-SIMS is not constrained by their photon absorption characteristics. This implies that matrix compounds that exhibit an insufficient photon absorption coefficient have the potential of working well with ME-SIMS. Here, we evaluate a set of novel derivatives of the classical MALDI matrices α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) for usability in ME-SIMS. This evaluation was carried out using peptide mixtures of different complexity and demonstrates significant improvements in signal intensity for several compounds with insufficient UV absorption at the standard MALDI laser wavelengths. Our study confirms that the gas-phase proton affinity of a matrix compound is a key physicochemical characteristic that determines its performance in a ME-SIMS experiment. As a result, these novel matrices improve the performance of matrix enhanced secondary ion mass spectrometry experiments on complex peptide mixtures.  相似文献   

4.
In recent years, there has been an increase in the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) for characterizing material surfaces. A great advantage of SIMS is that the analysis is direct and has excellent spatial resolution approaching a few hundred nanometers. However, the lack of the usual separation methods in mass spectrometry such as chromatography or ion mobility combined with the complexity of the heavily fragmented ions in the spectra means that the interpretation of multicomponent spectra in SIMS is very challenging indeed. The requirements for high-definition imaging, with say 256 × 256 pixels, in around 10 min analysis time places significant constraints on the instrument design so that separation using methods such as ion mobility with flight times of milliseconds are incompatible. Clearly, traditional liquid and gas chromatographies are not at all possible. Previously, we developed a method known as Gentle-SIMS (G-SIMS) that simplifies SIMS spectra so that the dominant ions are simply related to the structure of the substances analyzed. The method uses a measurement of the fragmentation behavior under two different primary ion source conditions and a control parameter known as the g-index. Here, we show that this method may be used "chromatographically" to separate the mass spectra of a drug molecule from the matrix polymer. The method may be used in real-time and is directly compatible with the majority of TOF-SIMS instruments. The applicability to other imaging mass spectrometeries is discussed.  相似文献   

5.
Intense intact molecular ion signals have been obtained from phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, and phosphatidyiinositol using matrix-enhanced secondary ion mass spectrometry (ME-SIMS). It was found that the high-mass (m/z >500) regions of the ME-SIMS spectra closely resembled those obtained using matrix-assisted laser desorption/ionization (MALDI). Using high spatial resolution SIMS, a detailed investigation of dried-droplet samples was performed. Based on the detected Na+ and 2,5-DHB matrix signal intensities, different crystal types were distinguished, in addition to different sizes of crystals. Spatially mapping the pseudomolecular and fragment ions of the phospholipids revealed that the nature of the pseudomolecular ions formed, as well as the ratio of intact molecular to fragment ion, was dependent on the type and surface composition of the crystal. The observed chemical bias effects due to crystal heterogeneity and the resulting variation in desorption/ionization efficiency will complicate the interpretation of data obtained from matrix-assisted mass spectrometric (imaging) techniques and is an important factor in the "hot spot" phenomenon frequently encountered in MALDI experiments. In this respect, imaging SIMS was found to be a versatile tool to investigate the effects of the local physicochemical conditions on the detected molecular species.  相似文献   

6.
Surface metallization by plasma coating enhances desorption/ionization of membrane components such as lipids and sterols in imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS) of tissues and cells. High-resolution images of cholesterol and other membrane components were obtained for neuroblastoma cells and revealed subcellular details (resolving power 1.5 mum). Alternatively, in matrix-enhanced SIMS, 2,5-dihydroxybenzoic acid electrosprayed on neuroblastoma cells allowed intact molecular ion imaging of phosphatidylcholine and sphingomyelin at the cellular level. Gold deposition on top of matrix-coated rat brain tissue sections strongly enhanced image quality and signal intensity in stigmatic matrix-assisted laser desorption/ionization imaging mass spectrometry. High-quality total ion count images were acquired, and the neuropeptide vasopressin was localized in the rat brain tissue section at the hypothalamic area around the third ventricle. Although the mechanism of signal enhancement by gold deposition is under debate, the results we have obtained for cells and tissue sections illustrate the potential of this sample preparation technique for biomolecular surface imaging by mass spectrometry.  相似文献   

7.
Willse A  Tyler B 《Analytical chemistry》2002,74(24):6314-6322
Multivariate statistical methods have been advocated for analysis of spectral images, such as those obtained with imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS). TOF-SIMS images using total secondary ion counts or secondary ion counts at individual masses often fail to reveal all salient chemical patterns on the surface. Multivariate methods simultaneously analyze peak intensities at all masses. We propose multivariate methods based on Poisson and multinomial mixture models to segment SIMS images into chemically homogeneous regions. The Poisson mixture model is derived from the assumption that secondary ion counts at any mass in a chemically homogeneous region vary according to the Poisson distribution. The multinomial model is derived as a standardized Poisson mixture model, which is analogous to standardizing the data by dividing by total secondary ion counts. The methods are adapted for contextual image segmentation, allowing for spatial correlation of neighboring pixels. The methods are applied to 52 mass units of a SIMS image with known chemical components. The spectral profile and relative prevalence for each chemical phase are obtained from estimates of model parameters.  相似文献   

8.
A matrix-assisted laser desorption/ionization (MALDI) ion trap mass spectrometer of new design is described. The instrument is based on a commercial Finnegan LCQ ion trap mass spectrometer to which we have added a MALDI ion source that incorporates a sample stage constructed from a compact disk and a new ion transmission interface. The ion interface contains a quadrupole ion guide installed between the skimmer and the octapoles of the original instrument configuration, allowing for operation in both MALDI and electrospray ionization modes. The instrument has femtomole sensitivity for peptides and is capable of collecting a large number of MALDI MS and MALDI MS/MS spectra within a short period of time. The MALDI source produces reproducible signals for 10(4)-10(5) laser pulses, enabling us to collect MS/MS spectra from all the discernible singly charged ions detected in a MS peptide map. We describe the different modes of the instrument operation and algorithms for data processing as applied to challenging protein identification problems.  相似文献   

9.
Weng LT  Wong PC  Ho K  Wang S  Zeng Z  Yang S 《Analytical chemistry》2000,72(20):4908-4913
A series of sulfonated poly(N-vinylcarbazole) (PVK) samples have been systematically studied by time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS). Negative TOF-SIMS results provided unambiguous evidence that sulfonate groups are chemically attached to the carbazole moiety of PVK. The positive SIMS spectrum of PVK was, however, little affected by the sulfonation reaction. The degree of sulfonation was quantitatively determined by XPS. Therefore, the combination of TOF-SIMS and XPS is useful to follow the sulfonation reaction, both qualitatively and quantitatively. The SIMS intensities of some characteristic fragments are linearly related to the degree of sulfonation, suggesting that quantitative analysis is possible from TOF-SIMS data.  相似文献   

10.
A new methodology, matrix-enhanced secondary ion mass spectrometry (ME-SIMS), is reported for the molecular analysis of biomaterials. The technique applies static secondary ion mass spectrometry (SSIMS) techniques to samples prepared in a solid organic matrix similar to sample preparations used in matrix-assisted laser desorption/ionization (MALDI). Molecular ions are observed in this ion beam sputtering of organic mixtures for peptides and oligonucleotides up to masses on the order of 10?000 Da. This matrix-enhanced SIMS exhibits substantial increases in the ionization efficiency of selected analyte molecules compared to conventional SSIMS processes. Thus, higher mass peptides, proteins, and nucleic acids become accessible to near-surface analysis by ion beam techniques, and subpicomole sensitivity has been demonstrated. A number of matrices were examined for their efficiency in ME-SIMS applications, and these initial matrix studies focused on common MALDI matrices and their isomers. The results of this survey indicate that 2,5-dihydroxybenzoic acid provides the best general enhancement of molecular secondary ions emitted from analyte/matrix mixtures.  相似文献   

11.
A new variant of depth profiling for thin-film fullerene-containing organic structures by the method of time-of-flight (TOF) secondary ion mass spectrometry (SIMS) on a TOF.SIMS-5 setup is described. The dependence of the yield of C60 molecular ions on the energy of sputtering ions has been revealed and studied. At an energy of sputtering Cs+ ions below 1 keV, the intensity of C60 molecular ions is sufficiently high to make possible both elemental and molecular depth profiling of multicomponent (multilayer) thin-film structures. Promising applications of TOF-SIMS depth profiling for obtaining more detailed information on the real molecular composition of functional organic materials are shown.  相似文献   

12.
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) can be utilized to map the distribution of various molecules on a surface with submicrometer resolution. Much of its biological application has been in the study of membrane lipids, such as phospholipids and cholesterol. Cholesterol is a particularly interesting molecule due to its involvement in numerous biological processes. For many studies, the effectiveness of chemical mapping is limited by low signal intensity from various biomolecules. Because of the high energy nature of the SIMS ionization process, many molecules are identified by detection of characteristic fragments. Commonly, fragments of a molecule are identified using standard samples, and those fragments are used to map the location of the molecule. In this work, MS/MS data obtained from a prototype C60(+)/quadrupole time-of-flight mass spectrometer was used in conjunction with indium LMIG imaging to map previously unrecognized cholesterol fragments in single cells. A model system of J774 macrophages doped with cholesterol was used to show that these fragments are derived from cholesterol in cell imaging experiments. Examination of relative quantification experiments reveals that m/z 147 is the most specific diagnostic fragment and offers a 3-fold signal enhancement. These findings greatly increase the prospects for cholesterol mapping experiments in biological samples, particularly with single cell experiments. In addition, these findings demonstrate the wealth of information that is hidden in the traditional TOF-SIMS spectrum.  相似文献   

13.
Positive and negative ions produced from matrix-assisted laser desorption/ionization (MALDI) were simultaneously measured using a newly developed dual-polarity time-of-flight mass spectrometer. This instrument is effective not only for express and comprehensive mass analysis but also for studying the ionization mechanisms of biomolecules. It comprises two identical time-of-flight mass analyzers located symmetrically about a MALDI ion source. The ion optics are arranged to be able to extract positive and negative ions synchronously with equal efficiency to each corresponding mass analyzer. Mass spectra of various proteins with molecular weights as large as that of myoglobin monomer and dimer were obtained. The spectral patterns obtained in this work are approximately mirror images with opposite polarities.  相似文献   

14.
A new sample ionization technique, atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI), was coupled with a commercial ion trap mass spectrometer. This configuration enables the application-specific selection of external atmospheric ionization sources: the electrospray/APCI (commercially available) and AP MALDI (built in-house), which can be readily interchanged within minutes. The detection limit of the novel AP MALDI/ion trap is 10-50 fmol of analyte deposited on the target surface for a four-component mixture of peptides with 800-1700 molecular weight. The possibility of peptide structural analysis by MS/MS and MS3 experiments for AP MALDI-generated ions was demonstrated for the first time.  相似文献   

15.
Mass-selected peptide ions produced by electrospray ionization were deposited onto fluorinated self-assembled monolayer surfaces (FSAM) surfaces by soft landing using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying interactions of large ions with surfaces. Analysis of the modified surface was performed in situ by combining 2-keV Cs+ secondary ion mass spectrometry with FT-ICR detection of the sputtered ions (FT-ICR-SIMS). Regardless of the initial charge state of the precursor ion, the SIMS mass spectra included singly protonated peptide ion, peptide fragment ions, and peaks characteristic of the surface in all cases. In some experiments, multiply protonated peptide ions and [M + Au]+ ions were also observed upon SIMS analysis of modified surfaces. For comparison with the in situ analysis of the modified surfaces, ex situ analysis of some of the modified surfaces was performed by 25-keV Ga+ time-of-flight-secondary ion mass spectrometry (TOF-SIMS). The ex situ analysis demonstrated that a significant number of soft-landed peptide ions remain charged on the surface even when exposed to air for several hours after deposition. Charge retention of soft-landed ions dramatically increases the ion yields obtained during SIMS analysis and enables very sensitive detection of deposited material at less than 1% of monolayer coverage. Accumulation of charged species on the surface undergoes saturation due to coulomb repulsion between charges at close to 30% coverage. We estimated that close to 1 ng of peptide could be deposited on the spot area of 4 mm2 of the FSAM surface without reaching saturation.  相似文献   

16.
Secondary ion mass spectrometry (SIMS) has seen increased application for high spatial resolution chemical imaging of complex biological surfaces. The advent and commercial availability of cluster and polyatomic primary ion sources (e.g., Au and Bi cluster and buckminsterfullerene (C(60))) provide improved secondary ion yield and decreased fragmentation of surface species, thus improving accessibility of intact molecular ions for SIMS analysis. However, full exploitation of the advantages of these new primary ion sources has been limited, due to the use of low mass resolution mass spectrometers without tandem MS to enable enhanced structural identification capabilities. Similarly, high mass resolution and high mass measurement accuracy would greatly improve the chemical specificity of SIMS. Here we combine, for the first time, the advantages of a C(60) primary ion source with the ultrahigh mass resolving power and high mass measurement accuracy of Fourier transform ion cyclotron resonance mass spectrometry. Mass resolving power in excess of 100?000 (m/Δm(50%)) is demonstrated, with a root-mean-square mass measurement accuracy below 1 part-per-million. Imaging of mouse brain tissue at 40 μm pixel size is shown. Tandem mass spectrometry of ions from biological tissue is demonstrated and molecular formulas were assigned for fragment ion identification.  相似文献   

17.
Tissue engineering approaches fabricate and subsequently implant cell-seeded and unseeded scaffold biomaterials. Once in the body, these biomaterials are repopulated with somatic cells of various phenotypes whose identification upon explantation can be expensive and time-consuming. We show that imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS) can be used to distinguish mammalian cell types in heterogeneous cultures. Primary rat esophageal epithelial cells (REEC) were cultured with NIH 3T3 mouse fibroblasts on tissue culture polystyrene and freeze-dried before TOF-SIMS imaging. Results show that a short etching sequence with C(60)(+) ions can be used to clean the sample surface and improve the TOF-SIMS image quality. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) were used to identify peaks whose contributions to the total variance in the multivariate model were due to either the two cell types or the substrate. Using PLS-DA, unknown regions of cellularity that were otherwise unidentifiable by SIMS could be classified. From the loadings in the PLS-DA model, peaks were selected that were indicative of the two cell types and TOF-SIMS images were created and overlaid that showed the ability of this method to distinguish features visually.  相似文献   

18.
A novel ionization source for biological mass spectrometry is described that combines atmospheric pressure (AP) ionization and matrix-assisted laser desorption/ionization (MALDI). The transfer of the ions from the atmospheric pressure ionization region to the high vacuum is pneumatically assisted (PA) by a stream of nitrogen, hence the acronym PA-AP MALDI. PA-AP MALDI is readily interchangeable with electrospray ionization on an orthogonal acceleration time-of-flight (oaTOF) mass spectrometer. Sample preparation is identical to that for conventional vacuum MALDI and uses the same matrix compounds, such as alpha-cyano-4-hydroxycinnamic acid. The performance of this ion source on the oaTOF mass spectrometer is compared with that of conventional vacuum MALDI-TOF for the analysis of peptides. PA-AP MALDI can detect low femtomole amounts of peptides in mixtures with good signal-to-noise ratio and with less discrimination for the detection of individual peptides in a protein digest. Peptide ions produced by this method generally exhibit no metastable fragmentation, whereas an oligosaccharide ionized by PA-AP MALDI shows several structurally diagnostic fragment ions. Total sample consumption is higher for PA-AP MALDI than for vacuum MALDI, as the transfer of ions into the vacuum system is relatively inefficient. This ionization method is able to produce protonated molecular ions for small proteins such as insulin, but these tend to form clusters with the matrix material. Limitations of the oaTOF mass spectrometer for singly charged high-mass ions make it difficult to evaluate the ionization of larger proteins.  相似文献   

19.
An atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI) source coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS) under UV laser and solid matrix conditions has been demonstrated to analyze a variety of labile oligosaccharides including O-linked and N-linked complex glycans released from glycoproteins. Spectra were acquired by both AP MALDI and vacuum MALDI and directly compared. The results presented here confirm that AP MALDI can generate significantly less energetic ions than vacuum MALDI and is able to produce the intact molecular ions with little or no fragmentation in both positive and negative ion mode analyses. Under certain conditions, noncovalent complexes of sialylated oligosaccharides were observed. The sensitivity attainable by AP MALDI was found to be comparable to conventional MALDI, and tandem mass spectrometry of oligosaccharides ionized by AP MALDI was shown to allow detailed structural analysis. Analysis of N-glycan mixtures derived from human fibrinogen further demonstrated that AP MALDI-FT ICR MS is ideal for the study of complex glycan samples as it provides high-accuracy, high-resolution mass analysis with no difficulty in distinguishing sample constituents from fragment ions.  相似文献   

20.
Kim J  Shon HK  Jung D  Moon DW  Han SY  Lee TG 《Analytical chemistry》2005,77(13):4137-4141
A chemical derivatization technique in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been developed to quantify the surface density of amine groups of plasma-polymerized ethylenediamine thin film deposited on a glass surface by inductively coupled plasma chemical vapor deposition. Chemical tags of 4-nitrobenzaldehyde or pentafluorobenzaldehyde were hybridized with the surface amine groups and were detected in TOF-SIMS spectra as characteristic molecular secondary ions. The surface amine density was controlled in a reproducible manner as a function of deposition plasma power and was also quantified using UV-visible spectroscopy. A good linear correlation was observed between the results of TOF-SIMS and UV-visible measurements as a function of plasma power. This shows that the chemical derivatization technique in TOF-SIMS analysis would be useful in quantifying the surface density of specific functional groups that exist on the organic surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号