首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Interactions of the chaperone Hsp104 with yeast Sup35 and mammalian PrP   总被引:1,自引:0,他引:1  
[PSI+] is a genetic element in yeast for which a heritable change in phenotype appears to be caused by a heritable change in the conformational state of the Sup35 protein. The inheritance of [PSI+] and the physical state of Sup35 in vivo depend on the protein chaperone Hsp104 (heat shock protein 104). Although these observations provide a strong genetic argument in support of the "protein-only" or "prion" hypothesis for [PSI+], there is, as yet, no direct evidence of an interaction between the two proteins. We report that when purified Sup35 and Hsp104 are mixed, the circular dichroism (CD) spectrum differs from that predicted by the addition of the proteins' individual spectra, and the ATPase activity of Hsp104 is inhibited. Similar results are obtained with two other amyloidogenic substrates, mammalian PrP and beta-amyloid 1-42 peptide, but not with several control proteins. With a group of peptides that span the PrP protein sequence, those that produced the largest changes in CD spectra also caused the strongest inhibition of ATPase activity in Hsp104. Our observations suggest that (i) previously described genetic interactions between Hsp104 and [PSI+] are caused by direct interaction between Hsp104 and Sup35; (ii) Sup35 and PrP, the determinants of the yeast and mammalian prions, respectively, share structural features that lead to a specific interaction with Hsp104; and (iii) these interactions couple a change in structure to the ATPase activity of Hsp104.  相似文献   

2.
Maintenance and inheritance of yeast prions   总被引:2,自引:0,他引:2  
The unusual genetic behaviour of two yeast extrachromosomal elements [PSI] and [URE3] is entirely consistent with a prion-like mechanism of inheritance involving an autocatalytic alteration in the conformation of a normal cellular protein. In the case of both yeast determinants the identity of the underlying cellular prion protein is known. The discovery that the molecular chaperone Hsp104 is essential for the establishment and maintenance of the [PSI] determinant provides an explanation for several aspects of the puzzling genetic behaviour of these determinants. What remains to be explained is whether these determinants represent 'disease states' of yeast or represent the first examples of a unique mechanism for producing a heritable change in phenotype without an underlying change in genotype.  相似文献   

3.
Specification of Hsp70 action in cellular protein metabolism may occur through the formation of specialized Hsp70:Hsp40 pairs. To test this model, we compared the ability of purified Sis1 and Ydj1 to regulate the ATPase and protein-folding activity of Hsp70 Ssa1 and Ssb1/2 proteins. Ydj1 and Sis1 could both functionally interact with Ssa1, but not the Ssb1/2 proteins, to refold luciferase. Interestingly, Ydj1:Ssa1 could promote up to four times more luciferase folding than Sis1:Ssa1. This functional difference was explored and could not be accounted for by differences in the ability of Sis1 and Ydj1 to regulate Ssa1 ATPase activity. Instead, differences in the chaperone function of Ydj1 and Sis1 were observed. Ydj1 was dramatically more effective than Sis1 at suppressing the thermally induced aggregation of luciferase. Paradoxically, Sis1 and Ydj1 could bind similar quantities of chemically denatured luciferase. The polypeptide binding domain of Sis1 was found to lie between residues 171-352 and correspond to its conserved carboxyl terminus. The conserved carboxyl terminus of Ydj1 is also known to participate in the binding of nonnative polypeptides. Thus, Ydj1 appears more efficient at assisting Ssa1 in folding luciferase because its contains a zinc finger-like region that is absent from Sis1. Ydj1 and Sis1 are structurally and functionally distinct Hsp40 proteins that can specify Ssa1 action by generating Hsp70:Hsp40 pairs that exhibit different chaperone activities.  相似文献   

4.
The 70 kDa heat shock family of molecular chaperones is essential to a variety of cellular processes, yet it is unclear how these proteins are regulated in vivo. We present evidence that the protein BAG-1 is a potential modulator of the molecular chaperones, Hsp70 and Hsc70. BAG-1 binds to the ATPase domain of Hsp70 and Hsc70, without requirement for their carboxy-terminal peptide-binding domain, and can be co-immunoprecipitated with Hsp/Hsc70 from cell lysates. Purified BAG-1 and Hsp/Hsc70 efficiently form heteromeric complexes in vitro. BAG-1 inhibits Hsp/Hsc70-mediated in vitro refolding of an unfolded protein substrate, whereas BAG-1 mutants that fail to bind Hsp/Hsc70 do not affect chaperone activity. The binding of BAG-1 to one of its known cellular targets, Bcl-2, in cell lysates was found to be dependent on ATP, consistent with the possible involvement of Hsp/Hsc70 in complex formation. Overexpression of BAG-1 also protected certain cell lines from heat shock-induced cell death. The identification of Hsp/Hsc70 as a partner protein for BAG-1 may explain the diverse interactions observed between BAG-1 and several other proteins, including Raf-1, steroid hormone receptors and certain tyrosine kinase growth factor receptors. The inhibitory effects of BAG-1 on Hsp/Hsc70 chaperone activity suggest that BAG-1 represents a novel type of chaperone regulatory proteins and thus suggest a link between cell signaling, cell death and the stress response.  相似文献   

5.
Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
We have previously shown that multicopy plasmids containing the complete SUP35 gene are able to induce the appearance of the non-Mendelian factor [PSI]. This result was later interpreted by others as a crucial piece of evidence for a model postulating that [PSI] is a self-modified, prion-like conformational derivative of the Sup35 protein. Here we support this interpretation by proving that it is the overproduction of Sup35 protein, and not the excess of SUP35 DNA or mRNA that causes the appearance of [PSI]. We also show that the "prion-inducing domain" of Sup35p is in the N-terminal region, which, like the "prion-inducing domain" of another yeast prion, Ure2p, was previously shown to be distinct from the functional domain of the protein. This suggests that such a chimeric organization may be a common pattern of some prion elements. Finally, we find that [PSI] factors of different efficiencies and different mitotic stabilities are induced in the same yeast strain by overproduction of the identical Sup35 protein. We suggest that the different [PSI]-containing derivatives are analogous to the mysterious mammalian prion strains and result from different conformational variants of Sup35p.  相似文献   

6.
The substrate-specific protein chaperone Hsp90 (heat shock protein 90) from Saccharomyces cerevisiae functions in diverse signal transduction pathways. A mutation in YDJ1, a member of the DnaJ chaperone family, was recovered in a synthetic-lethal screen with Hsp90 mutants. In an otherwise wild-type background, the ydj1 mutation exerted strong and specific effects on three Hsp90 substrates, derepressing two (the estrogen and glucocorticoid receptors) and reducing the function of the third (the tyrosine kinase p60v-src). Analysis of one of these substrates, the glucocorticoid receptor, indicated that Ydj1 exerts its effects through physical interaction with Hsp90 substrates.  相似文献   

7.
8.
Hop, an abundant and conserved protein of unresolved function, binds concomitantly with heat shock protein 70 (Hsp70) and Hsp90, participates with heat shock proteins at an intermediate stage of progesterone receptor assembly, and is required for efficient assembly of mature receptor complexes in vitro. A largely untested hypothesis is that Hop functions as an adaptor that targets Hsp90- to Hsp70-substrate complexes; if true, then loss of either Hsp70 binding or Hsp90 binding by Hop should equally disrupt its ability to promote assembly of mature receptor complexes. To generate Hop mutants that selectively disrupt heat shock protein interactions, highly conserved amino acids in the previously mapped Hsp70 and Hsp90 binding domains of Hop and in a conserved C-terminal domain were targeted for small substitutions and deletions. In co-precipitation assays, these mutants displayed selective loss of association with heat shock proteins. In assays using Hop-depleted rabbit reticulocyte lysate for the cell-free assembly of receptor complexes, none of the Hop mutants inhibited Hsp70 binding to receptor, but all mutants were defective in supporting Hsp90-receptor interactions. Thus, Hop has a novel role in the chaperone machinery as an adaptor that can integrate Hsp70 and Hsp90 interactions.  相似文献   

9.
Hsp90 functions in a multicomponent chaperone system to promote the maturation and maintenance of a diverse, but specific, set of target proteins that play key roles in the regulation of cell growth and development. To identify additional components of the Hsp90 chaperone system and its targets, we searched for multicopy suppressors of various temperature-sensitive mutations in the yeast Hsp90 gene, HSP82. Three suppressors were isolated for one Hsp90 mutant (glutamate --> lysine at amino acid 381). Each exhibited a unique, allele-specific pattern of suppression with other Hsp90 mutants and had unique structural and biological properties. SSF1 is a member of an essential gene family and functions in the response to mating pheromones. CNS1 is an essential gene that encodes a component of the Hsp90 chaperone machinery. The role of HCH1 is unknown; its sequence has no strong homology to any protein of known function. SSF1 and CNS1 were weak suppressors, whereas HCH1 restored wild-type growth rates at all temperatures tested to cells expressing the E381K mutant. Overexpression of CNS1 or HCH1, but not SSF1, enhanced the maturation of a heterologous Hsp90 target protein, p60(v-src). These results suggest that like Cns1p, Hch1p is a general modulator of Hsp90 chaperone functions, whereas Ssf1p likely is either an Hsp90 target protein or functions in the same pathway as an Hsp90 target protein.  相似文献   

10.
Disruption of the HSP104 gene in a mutant which cannot accumulate trehalose during heat shock treatment caused trehalose accumulation (H. Iwahashi, K. Obuchi, S. Fujii, and Y. Komatsu, Lett. Appl. Microbiol 25:43-47, 1997). This implies that Hsp104 affects trehalose metabolism. Thus, we measured the activities of enzymes involved in trehalose metabolism. The activities of trehalose-synthesizing and -hydrolyzing enzymes are low in the HSP104 disruption mutant during heat shock. This data is correlated with intracellular trehalose and glucose levels observed in the HSP104 disruption mutant. These results suggest that during heat shock, Hsp104 contributes to the simultaneous increase in both accumulation and degradation of trehalose.  相似文献   

11.
Several mammalian genes, including heat shock protein (Hsp70) and prion protein (PrP) genes, have been reported to have long open reading frames (ORFs) or non-stop reading frames (NRFs) in the antisense direction. A simple explanation would be that these long antisense reading frames, which are usually in the same triplet frame as the coding strand, are the fortuitous byproduct of a high overall [G+C] content with concomitant preference for G/C over A/T in the third codon position, a preference for RNY type codons (purine/any nucleotide/pyrimidine), and/or a bias against serine and leucine, the only amino acids with codons that can be read as stop codons in the antisense direction. The PrP genes and most heat shock genes with long antisense NRFs (aNRFs) are indeed relatively [G+C] rich but do not show a bias against serine and leucine. In several vertebrates investigated, at least one of the Hsp70 genes has a long antisense reading frame, and we found that some, though not all, putative stop codons in long Hsp70 antisense reading frames were due to sequencing errors. The PrP gene contains an extended antisense open reading frame in all 45 eutherian mammals tested, but not in a marsupial and in a bird. In the PrP gene, the long, protein-coding exon also harbors the antisense nonstop reading frame. In both Hsp70 and PrP genes, the putative antisense protein sequence is well conserved. Even though there is no clear evidence in Hsp70 or PrP genes for the existence of the respective antisense proteins, we speculate that such antisense proteins serve to regulate the genuine Hsp and PrP proteins under special circumstances. Alternatively, regulation might occur at the RNA level, and the antisense RNA would merely lack stop codons to prevent its rapid degradation by an mRNA quality control mechanism that is triggered by premature stop codons. We note that both Hsp and PrP are involved in physiological or pathological protein aggregation phenomena, that scrapie prions have been reported to modify the expression or localization of heat shock proteins, and that in yeast, propagation of a prion-like state (PSI+) depends on a heat shock (Hsp104) protein.  相似文献   

12.
The SUP45 and SUP35 genes of Saccharomyces cerevisiae encode polypeptide chain release factors eRF1 and eRF3, respectively. It has been suggested that the Sup35 protein (Sup35p) is subject to a heritable conformational switch, similar to mammalian prions, thus giving rise to the non-Mendelian [PSI+] nonsense suppressor determinant. In a [PSI+] state, Sup35p forms high-molecular-weight aggregates which may inhibit Sup35p activity, leading to the [PSI+] phenotype. Sup35p is composed of the N-terminal domain (N) required for [PSI+] maintenance, the presumably nonfunctional middle region (M), and the C-terminal domain (C) essential for translation termination. In this study, we observed that the N domain, alone or as a part of larger fragments, can form aggregates in [PSI+] cells. Two sites for Sup45p binding were found within Sup35p: one is formed by the N and M domains, and the other is located within the C domain. Similarly to Sup35p, in [PSI+] cells Sup45p was found in aggregates. The aggregation of Sup45p is caused by its binding to Sup35p and was not observed when the aggregated Sup35p fragments did not contain sites for Sup45p binding. The incorporation of Sup45p into the aggregates should inhibit its activity. The N domain of Sup35p, responsible for its aggregation in [PSI+] cells, may thus act as a repressor of another polypeptide chain release factor, Sup45p. This phenomenon represents a novel mechanism of regulation of gene expression at the posttranslational level.  相似文献   

13.
Hsp90, an abundant heat shock protein that is highly expressed even under physiological conditions, is involved in the folding of key molecules of the cellular signal transduction system such as kinases and steroid receptors. It seems to contain two chaperone sites differing in substrate specificity. Binding of ATP or the antitumor drug geldanamycin alters the substrate affinity of the N-terminal chaperone site, whereas both substances show no influence on the C-terminal one. In wild-type Hsp90 the fragments containing the chaperone sites are connected by a highly charged linker of various lengths in different organisms. As this linker region represents the most striking difference between bacterial and eukaryotic Hsp90s, it may be involved in a gain of function of eukaryotic Hsp90s. Here, we have analyzed a fragment of yeast Hsp90 consisting of the N-terminal domain and the charged region (N272) in comparison with the isolated N-terminal domain (N210). We show that the charged region causes an increase in the affinity of the N-terminal domain for nonnative protein and establishes a crosstalk between peptide and ATP binding. Thus, the binding of peptide to N272 decreases its affinity for ATP and geldanamycin, whereas the ATP-binding properties of the monomeric N-terminal domain N210 are not influenced by peptide binding. We propose that the charged region connecting the two chaperone domains plays an important role in regulating chaperone function of Hsp90.  相似文献   

14.
Hsp70 molecular chaperones are highly conserved ATPases that guide the folding and assembly of proteins in many cellular pathways. They use the energy of ATP binding and hydrolysis to regulate their interactions with hydrophobic regions of unfolded proteins. The activities and the conformations of the N-terminal nucleotide- and C-terminal polypeptide-binding domains of Hsp70s are coupled. We recently reported that the sulfhydryl-modifying reagent N-ethylmaleimide (NEM) inactivates the yeast Hsp70 Ssa1p by reacting with its three cysteine residues which are located in the nucleotide-binding domain. To further characterize conformational changes associated with interdomain coupling and to determine whether NEM alters Ssa1p's conformation, the structures of Ssa1p and NEM-modified Ssa1p (NEM-Ssa1p) were compared using a variety of biophysical techniques. Size exclusion chromatography revealed that NEM-Ssa1p is more oligomeric and more resistant to nucleotide- or polypeptide-dependent depolymerization than Ssa1p. Measurement of the thermal stability indicated that NEM modification has an effect very similar to that of binding of nucleotides to the unmodified protein. Circular dichroism demonstrated small differences in the secondary structure of Ssa1p and NEM-Ssa1p, and in their complexes with nucleotides. NEM modification increased the ANS fluorescence of Ssa1p and exposed numerous trypsin-sensitive sites in its nucleotide-binding domain. The intrinsic fluorescence of Ssa1p's only tryptophan residue, which is located in a C-terminal alpha-helical region adjacent to the polypeptide-binding cleft, was quenched in the presence of ATP, but not ADP. NEM modification altered nucleotide-dependent changes in the intrinsic fluorescence of Ssa1p. Together, these results demonstrate that NEM alters the conformation of Ssa1p and disrupts, but does not eliminate, interdomain communication. Furthermore, the results provide evidence for a model in which the polypeptide-binding cleft of Hsp70s is covered by an alpha-helical lid that is open in the presence of ATP, but closed in the presence of ADP.  相似文献   

15.
16.
17.
The in vivo function of the heat shock protein 90 (Hsp90) molecular chaperone is dependent on the binding and hydrolysis of ATP, and on interactions with a variety of co-chaperones containing tetratricopeptide repeat (TPR) domains. We have now analysed the interaction of the yeast TPR-domain co-chaperones Sti1 and Cpr6 with yeast Hsp90 by isothermal titration calorimetry, circular dichroism spectroscopy and analytical ultracentrifugation, and determined the effect of their binding on the inherent ATPase activity of Hsp90. Sti1 and Cpr6 both bind with sub-micromolar affinity, with Sti1 binding accompanied by a large conformational change. Two co-chaperone molecules bind per Hsp90 dimer, and Sti1 itself is found to be a dimer in free solution. The inherent ATPase activity of Hsp90 is completely inhibited by binding of Sti1, but is not affected by Cpr6, although Cpr6 can reactivate the ATPase activity by displacing Sti1 from Hsp90. Bound Sti1 makes direct contact with, and blocks access to the ATP-binding site in the N-terminal domain of Hsp90. These results reveal an important role for TPR-domain co-chaperones as regulators of the ATPase activity of Hsp90, showing that the ATP-dependent step in Hsp90-mediated protein folding occurs after the binding of the folding client protein, and suggesting that ATP hydrolysis triggers client-protein release.  相似文献   

18.
The bacterial heat shock response is characterized by the elevated expression of a number of chaperone complexes and proteases, including the DnaK-GrpE-DnaJ and the GroELS chaperone complexes. In order to investigate the importance of the DnaK chaperone complex for growth and heat shock response regulation in Lactococcus lactis, we have constructed two dnaK mutants with C-terminal deletions in dnaK. The minor deletion of 65 amino acids in the dnaKDelta2 mutant resulted in a slight temperature-sensitive phenotype. BK6, containing the larger deletion of 174 amino acids (dnaKDelta1), removing the major part of the inferred substrate binding site of the DnaK protein, exhibited a pronounced temperature-sensitive phenotype and showed altered regulation of the heat shock response. The expression of the heat shock proteins was increased at the normal growth temperature, measured as both protein synthesis rates and mRNA levels, indicating that DnaK could be involved in the regulation of the heat shock response in L. lactis. For Bacillus subtilis, it has been found (A. Mogk, G. Homuth, C. Scholz, L. Kim, F. X. Schmid, and W. Schumann, EMBO J. 16:4579-4590, 1997) that the activity of the heat shock repressor HrcA is dependent on the chaperone function of the GroELS complex and that a dnaK insertion mutant has no effect on the expression of the heat shock proteins. The present data from L. lactis suggest that the DnaK protein could be involved in the maturation of the homologous HrcA protein in this bacterium.  相似文献   

19.
We reported previously that heat or ethanol shock in Saccharomyces cerevisiae leads to nuclear retention of most poly(A)+ RNA but heat shock mRNAs (encoding Hsp70 proteins Ssa1p and Ssa4p) are efficiently exported in a process that is independent of the small GTPase Ran/Gsp1p, which is essential for most nucleocytoplasmic transport. To gain further insights into proteins essential or nonessential for export of heat shock mRNAs, in situ hybridization analyses to detect mRNA and pulse-labeling of proteins were used to examine several yeast mutant strains for their ability to export heat shock mRNAs following stress. Rip1p is a 42-kD protein associated with nuclear pore complexes and contains nucleoporin-like repeat sequences. It is dispensable for growth of yeast cells under normal conditions, but we report that it is essential for the export of heat shock mRNAs following stress. When SSA4 mRNA was induced from a GAL promoter in the absence of stress, it was efficiently exported in a strain lacking RIP1, indicating that Rip1p is required for export of heat shock mRNAs only following stress. Npl3p, a key mediator of export of poly(A)+ RNA, was not required for heat shock mRNA export, whereas Rss1p/Gle1p, a NES-containing factor essential for poly(A)+ RNA export, was also required for export of heat shock mRNAs after stress. High-level expression of the HIV-1 Rev protein, but not of Rev mutants, led to a partial block in export of heat shock mRNAs following stress. The data suggest a model wherein the requirement for Npl3p defines the mRNA export pathway, the requirement for Rip1p defines a pathway used for export of heat shock mRNAs after stress, and additional factors, including Rss1p/Gle1p and several nucleoporins (Rat7p/Nup159p, Rat2p/Nup120p, and Nup145p/Rat10p), are required in both pathways.  相似文献   

20.
It has been previously reported that heat shock protein 90 (Hsp90) oligomerizes at high temperatures and displays concomitantly a novel chaperone activity (Yonehara, M., Minami, Y., Kawata, Y., Nagai, J., and Yahara, I. (1996) J. Biol. Chem., 271, 2641-2645). In order to better define these oligomerization properties at high temperatures and to know whether they are influenced by modulators of Hsp90 function, heat-induced oligomerization of highly purified dimeric Hsp90 has been investigated over a wide range of temperature and protein concentrations by native polyacrylamide gel electrophoresis and size exclusion chromatography. Whereas below 50 degreesC, the dimeric form is maintained over a large range of concentrations, at the critical temperature of 50 degreesC, a sharp transition from dimeric to higher order oligomeric species takes place within minutes, in a highly ordered process, suggesting that a conformational change, leading to the appearance of a new oligomerization site, occurs in Hsp90 dimer. Moreover, at and above the critical temperature, the extent of oligomerization increases with Hsp90 concentration. Formation of high order oligomers at high temperatures is sensitive to modulators of Hsp90 function. ATP and geldanamycin, both known to bind to the same pocket of Hsp90, are inhibitors of this process, whereas molybdate, vanadate, and Nonidet P-40, which are thought to increase surface hydrophobicity of the protein, are activators. Thus, oligomerization of Hsp90 at high temperatures may be mediated through hydrophobic interactions that are hindered by ligands and favored by transition metal oxyanions. The fact that the heat-induced oligomerization of Hsp90 is affected by specific ligands that modulate its properties also suggests that this process may be involved in cell protection during heat shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号