首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《粘接》2016,(6)
采用半连续滴加工艺,在β-环糊精(β-CD)存在下制备了综合性能优良的苯丙乳液,探讨了十二烷基硫酸钠(SDS)的用量对苯丙乳液性能的影响。结果表明,随着SDS用量的增加,乳液的凝胶率、乳胶粒子的粒径逐渐减小,粒径分布变窄,单体转化率、Zeta电位绝对值和乳液黏度都逐渐增大,稳定性变好。  相似文献   

2.
以乙烯基三乙氧基硅烷(VTES)和甲基丙烯酸十二氟庚酯(GO4)作为苯丙乳液的改性剂,采用半连续乳液聚合法制得了核壳型氟硅改性的苯丙乳液。讨论了乳化剂用量、引发剂用量、交联剂用量以及改性剂用量对乳液单体转化率的影响,并对改性乳液和未改性乳液进行了性能测试。结果表明,改性后的苯丙乳液比未改性的苯丙乳液转化率高,涂膜吸水率低,耐溶剂性好;乳胶膜的红外光谱测试表明单体已经反应完全且氟硅单体已接枝到共聚物中;粒径分析和TEM测试则说明乳胶粒粒径较小,呈核壳型结构且粒径分布均匀。  相似文献   

3.
采用预乳化-半连续种子乳液聚合方法合成了聚丙烯酸丁酯(PBA)-聚(甲基丙烯酸甲酯-丙烯酰胺)核壳乳胶粒子,通过Hofmann降级反应成功地将其改性为表层含氨基的PBA-聚(甲基丙烯酸甲酯-乙烯胺)[P(MMA-VAm)]核壳乳胶粒子,并对其进行了测试与表征。结果表明:PBA-P(MMA-VAm)核壳乳胶粒子呈球形且分散均匀,平均粒径在340 nm左右,其中,PBA核乳胶粒子平均粒径在270 nm左右;随着丙烯酰胺(AM)用量增加,壳层共聚物P(MMA-VAm)的玻璃化转变温度逐渐降低,PBA-P(MMA-VAm)核壳乳胶粒子的热稳定性受到一定影响;随着AM用量增加,PBA-P(MMA-VAm)核壳乳胶粒子壳层氨基含量逐渐增大,当AM用量为MMA质量的20%时,氨基质量分数达到2%以上。  相似文献   

4.
采用预乳化-半连续种子乳液聚合方法合成了聚丙烯酸丁酯(PBA)-聚(甲基丙烯酸甲酯-丙烯酰胺)核壳乳胶粒子,通过Hofmann降级反应成功地将其改性为表层含氨基的PBA-聚(甲基丙烯酸甲酯-乙烯胺)[P(MMA-VAm)]核壳乳胶粒子,并对其进行了测试与表征。结果表明:PBA-P(MMA-VAm)核壳乳胶粒子呈球形且分散均匀,平均粒径在340 nm左右,其中,PBA核乳胶粒子平均粒径在270 nm左右;随着丙烯酰胺(AM)用量增加,壳层共聚物P(MMA-VAm)的玻璃化转变温度逐渐降低,PBA-P(MMA-VAm)核壳乳胶粒子的热稳定性受到一定影响;随着AM用量增加,PBA-P(MMA-VAm)核壳乳胶粒子壳层氨基含量逐渐增大,当AM用量为MMA质量的20%时,氨基质量分数达到2%以上。  相似文献   

5.
不同偶联剂对苯丙乳液的改性效果   总被引:2,自引:2,他引:0  
采用核壳乳液聚合法,利用前期研究已确定的核壳乳液合成配方,分别将不同种类和用量的硅烷偶联剂[γ-氨丙基三乙氧基硅烷(KH-550)、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷(KH-560)以及乙烯基三乙氧基硅烷(DL-151)]引入到苯丙乳液中,制得有机硅改性苯丙乳液。利用差示扫描量热分析(DSC)法、透射电镜(TEM)法和粒度分析法等多种检测手段,研究了偶联剂的种类与用量对乳液性能(包括粒径及其分布、钙离子稳定性、黏度、玻璃化转变温度及乳胶粒的核壳结构等)和乳胶膜性能(包括成膜性、吸水率、耐水性、附着力和铅笔硬度等)的影响。结果表明:乳胶粒的平均粒径最小为115 nm;DL-151和KH-560对苯丙乳液的改性效果较好,可以考虑将两者复配后共同改性苯丙乳液,以期获得综合性能较好的改性苯丙乳液。  相似文献   

6.
通过半连续种子乳液聚合的方法,制备了具有核壳结构的丙烯酸酯聚合物乳胶粒子。采用甲基丙烯酸甲酯(MMA)、甲基丙烯酸酯正丁酯(n-BMA)等单体进行共聚。研究了共聚合过程中,乳化剂浓度、引发剂等对聚合物乳液粒径大小、凝胶量等的影响,并利用动态光散射(DLS)、透射电镜(TEM)和差示扫描量热仪(DSC)对乳胶粒子进行表征。结果表明:核乳液聚合阶段乳化剂浓度增大,乳液粒子的粒径变小,引发剂用量对粒径及分布影响不大;TEM观察到核乳胶粒径大小及变化趋势与DLS测得的结果相一致,并且核乳胶粒子和核壳乳液粒子都呈规则的圆球状,分布均一;DLS测试核壳丙烯酸酯乳胶粒子粒径的变化呈逐渐增长的趋势;DSC测试发现制备的核壳粒子有2个玻璃化转变温度(Tg),验证了胶乳粒子核壳结构的存在。  相似文献   

7.
采用种子乳液半连续法合成了具有高有机硅含量的聚硅氧烷/丙烯酸酯核壳结构复合乳液,研究乳化剂的种类、复配比例及质量浓度对有机硅/丙烯酸酯壳核乳液性能与乳胶粒径、分布和结构的影响.结果表明:阴离子乳化剂十二烷基硫酸钠(SDS)、十二烷基磺酸钠(SDS-2)、十二烷基苯磺酸钠(SDBS)所合成的乳胶粒子粒径依次增大,SDS与非离子型乳化剂OP-10复配使用时,随OP-10质量分数的增加,聚合速率和转化率降低,化学稳定性增加,乳胶粒子粒径增大,分布变宽,确定了复合乳化剂的最佳配比.随复合乳化剂浓度的增加,聚合速率加快、转化率增加,乳胶粒子粒径减小而分布加宽.通过改变乳化剂加入方式可减小乳胶粒子的粒径分布.为减少壳层聚合物新粒子的产生,需严格控制乳化剂的浓度,使加入的壳层单体处于“饥饿”状态,在乳胶粒子表面富集、引发聚合,形成表层“过渡层”,最终形成核壳结构复合粒子.  相似文献   

8.
以甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)为主单体,分别加入丙烯酸六氟丁酯(HFBMA)和甲基丙烯酸十二氟庚酯(DFHM)作为聚丙烯酸酯改性剂,制备了2种含氟丙烯酸酯核壳乳液。采用1H-NMR、TEM、DSC、EDS-SEM、Zeta电位及纳米激光粒度仪等表征了乳胶粒子的组成、结构、粒径及其分布以及乳胶膜表面氟元素的含量。研究了2种含氟单体的用量对乳液稳定性、乳胶膜吸水率、单体转化率、乳胶膜表面疏水疏油性等的影响;研究结果表明:DFHM的改性效果明显好于HFBMA。当DFHM的加入量为4%时,乳胶膜对水的接触角达到93.5°,吸水率降为11.54%,对正己烷的接触角达到82.0°;乳胶粒子的平均粒径70.02 nm,粒径分布窄(PDI=0.082),且具有核壳结构;SEM-EDS测试结果显示,制备的含氟聚合物在成膜过程中,氟元素更易向表面迁移,从理论的5.70%上升到13.47%,从而使乳胶膜具有更好的疏水和疏油性能。  相似文献   

9.
柔性硅丙外墙乳胶涂料的制备及性能研究   总被引:1,自引:0,他引:1  
通过合理的乳胶粒子结构设计,采用有机硅单体对乳胶粒子的壳层进行改性,合成出核壳型柔性硅丙乳液。研究了乳胶粒子结构,有机硅单体含量对乳液制备过程,乳胶膜及其配制涂料性能的影响。研究结果表明:乳胶粒子设计成硬核软壳型,有机硅用量占单体总量5%,所得乳液制备的柔性硅丙外墙乳胶涂料各项性能良好。  相似文献   

10.
采用预乳化半连续种子乳液聚合方法制备了一种新型的表层含氨基的聚甲基丙烯酸丁酯(PBA)-聚(甲基丙烯酸甲酯-甲基丙烯酸二甲氨基乙酯)[P(MMA-DMA)]核壳乳胶粒子,并通过激光粒径分析仪、透射电子显微镜、X射线光电子能谱仪和元素分析仪等对其进行表征。结果表明:PBA-P(MMA-DMA)乳胶粒子为核壳结构,PBA核芯和PBA-P(MMA-DMA)核壳乳胶粒子的平均粒径分别为270,340 nm;PBA-P(MMA-DMA)核壳乳胶粒子的壳层确实含有甲基丙烯酸二甲氨基乙酯(DMA),当DMA用量为甲基丙烯酸甲酯质量的10.0%时,PBAP(MMA-DMA)核壳乳胶粒子氮元素质量分数达0.29%,折合壳层氨基质量分数达0.78%。  相似文献   

11.
Hollow polymer latex particles containing a hydrophilic core were prepared by seeded emulsion polymerization with MAA/BA/MMA/St as comonomers, followed by stepwise alkalization treatment with ammonia. The size and morphology of composite latex particles was determined by TEM. The effects of the seeded emulsion polymerization conditions and alkalization treatment on the size and hollow structure of latex were investigated. The results showed that the optimum content of crosslinking agent in the shell polymers was about 0.5–1.0 wt %, emulsifier was about 0.8–1.1 wt %, and the core/shell weight ratio was 1/7. To obtain uniform hollow latex particles with large size, the starved feeding technique should be adopted in seeded emulsion polymerization, and the neutralization temperature should equal to the Tg of the shell polymer. Then, the obtained polymer particles under this condition had an excellent hollow structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
A theoretical analysis and a morphological prediction of polyacrylate (PA)/polysiloxane (PSi) latex particles with core/shell morphologies were first conducted based on interfacial tensions and relative volumes of the two polymers in the latex system. The results indicated that the normal core/shell morphology particles (PSi/PA), with hydrophobic polysiloxane as the core and with hydrophilic polyacrylate as the shell, can be easily formed. Although the inverted core/shell morphology particles (PA/PSi) with polyacrylate as the core could not be formed in most cases, even if the fraction volume of polysiloxane was larger than 0.872, which is the smallest value of forming a PA/PSi particle, the PSi/PA particles were unavoidably formed simultaneously with PA/PSi particle formation. The synthesis of PA/PSi particles containing equal amounts of polyacrylate and polysiloxane was then carried out using seeded emulsion polymerization. Before the cyclosiloxane cationic polymerization, 3‐methacryloyloxypropyl trimethoxysilane (MATS) was introduced into the polyacrylate seed latex to form an intermediate layer and chemical bonds between the core and the shell polymers. The characterization by transmission electron microscopy (TEM) demonstrated that the perfect PA/PSi core/shell particle is successfully synthesized when both the core and the shell polymers are crosslinked. The experiments showed that both the hardness and water adsorption ratio characteristics of latex films of the PA/PSi particles are in good agreement with those of the polysiloxane film. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2251–2258, 2001  相似文献   

13.
Suspension‐emulsion combined polymerization process, in which methyl methacrylate (MMA) emulsion polymerization constituents (EPC) were drop wise added to styrene (St) suspension polymerization system, was applied to prepare polystyrene/poly(methyl methacrylate) (PS/PMMA) composite particles. The influences of the feeding condition and the composition of EPC on the particle feature of the resulting composite polymer particles were investigated. It was found that PS/PMMA core‐shell composite particles with a narrow particle size distribution and a great size would be formed when the EPC was added at the viscous energy dominated particle formation stage of St suspension polymerization with a suitable feeding rate, whereas St‐MMA copolymer particles or PS/PMMA composite particles with imperfect core‐shell structure would be formed when the EPC was added at the earlier or later stage of St suspension polymerization, respectively. It was also showed that the EPC composition affected the composite particles formation process. The individual latex particles would exist in the final product when the concentrations of MMA monomer, sodium dodecyl sulfate emulsifier, and potassium persulfate initiator were great in the EPC. Considering the feature of St suspension polymerization and the morphology of PS/PMMA composite particles, the formation mechanism of PS/PMMA particles with core‐shell structure was proposed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
In a low emulsifier system, the MMA‐BA‐MAA copolymer emulsions were prepared as seed latices and the seeded emulsion polymerization of MMA‐MAA‐DVB was consequently carried out to prepare carboxylated core particles. The hydrophobic shell was then synthesized onto the core using styrene, acrylonitrile, and divinylbenzene as comonomers. The hollow latex particles were obtained by alkalization treatment of the core‐shell latex particles. The effects of the feeding rate of monomer mixture, contents of emulsifier SDBS and crosslinking agent DVB, and ratio of the monomers during the core stage and shell stage on the morphology and volume expansion of the latex particles were investigated. The results show that the monodispersed hollow latex particles with large size can be obtained when the feeding rate is 0.1 g/min, SDBS content is 0.15 and 0.2 wt % during the core stage and shell stage, respectively, DVB contents are 1% during the preparation of shell copolymers, and the monomer ratio of the core particle to shell layer is 1 : 8. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1505–1510, 2005  相似文献   

15.
A core–shell fluorine–silicon modified polyacrylate hybrid latex was successfully prepared via emulsifier‐free emulsion polymerization. The chemical composition and core–shell morphology of the resultant hybrid particles were investigated using 1H NMR and Fourier transform infrared spectroscopies and transmission electron microscopy (TEM), respectively. TEM analysis indicated that the core–shell hybrid particles were uniform with narrow size distributions. The particle size and zeta potential decreased with an increase of alkylvinylsulfonate surfactant from 2.5 to 6.0 wt%. X‐ray photoelectron spectroscopy revealed that fluorine concentrated preferentially at the film surface during a film‐formation process. The film formed from the fluorine–silicon modified polyacrylate showed much higher thermal stability than a film formed from polyacrylate and fluorine‐modified polyacrylate. Contact angle results showed that a finished fabric had remarkable water repellency. © 2015 Society of Chemical Industry  相似文献   

16.
Poly(butyl acrylate)/poly(methyl methacrylate) (PBA/PMMA) core–shell particles embedded with nanometer‐sized silica particles were prepared by emulsion polymerization of butyl acrylate (BA) in the presence of silica particles preabsorbed with 2,2′‐azobis(2‐amidinopropane)dihydrochloride (AIBA) initiator and subsequent MMA emulsion polymerization in the presence of PBA/silica composite particles. The morphologies of the resulting PBA/silica and PBA/silica/PMMA composite particles were characterized, which showed that AIBA could be absorbed effectively onto silica particles when the pH of the dispersion medium was greater than the isoelectric potential point of silica. The critical amount of AIBA added to have stable dispersion of silica particles increased as the pH of the dispersion medium increased. PBA/silica composite particles prepared by in situ emulsion polymerization using silica preabsorbed with AIBA showed higher silica absorption efficiency than did the PBA/silica composite particles prepared by direct mixing of PBA latex and silica dispersion or by emulsion polymerization in which AIBA was added after the mixing of BA and silica. The PBA/silica composite particles exhibited a raspberrylike morphology, with silica particles “adhered” to the surfaces of the PBA particles, whereas the PBA/silica/PMMA composite latex particles exhibited a sandwich morphology, with silica particles mainly at the interface between the PBA core and the PMMA shell. Subsequently, the PBA/silica/PMMA composite latex obtained had a narrow particle size distribution and good dispersion stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3425–3432, 2006  相似文献   

17.
In this study, the latex particles with a polyacrylate core and a polydimethylsiloxane shell via 3-(methacryloxypropyl)-trimethoxysilane as the space arm to link the core and shell have been prepared by semi continuous seeded emulsion polymerization. And several key polymerization reaction conditions such as the emulsifier concentration, 3-(methacryloxypropyl)-trimethoxysilane dosages, feeding sequence and the acrylates/siloxanes ratio were detailedly discussed. Then, the optimal condition to prepare stable core/shell particles was selected and a proper preparation process has been established. The as-synthesized particles were characterized by TEM and XPS. The clear core/shell structure of the particles could be observed through analysis TEM. In addition, the results of XPS analyses manifested that siloxanes had been grafted on the surface of the polyacrylate particles and they distributed on the outmost layer of the particles. Finally, the surface hydrophobicity of the film formed by latex particles was investigated by the water absorption ratio measurement. The results indicated the developed latex particle provided with a fair water-repellency property.  相似文献   

18.
为了合成表面含磺酸基的双亲型核-壳聚合物,本文采用两步乳液聚合法,第1步合成PS种子乳液;第2步用氧化还原引发体系在PS种子乳胶粒外包覆1层交联的聚苯乙烯磺酸酯,得到表面含磺酸酯的核-壳型聚苯乙烯(CPS)乳胶粒子。通过调节壳层单体的加入量,可以控制外壳层聚合物的质量分数(相对核层)在10%~30%之间。将外壳层的磺酸酯基水解转化成磺酸基得目标产物。用透射电子显微镜(TEM)、红外光谱(IR)、差热分析(DSC)和热失重分析(TGA)、X射线光电能谱(XPS)等方法对制备的乳胶粒子进行了测试和表征。  相似文献   

19.
In this study, the hollow latex particle was synthesized by three processes. The first process was to synthesize the poly(methyl methacrylate-co-methacrylic acid) (poly(MMA-MAA)) copolymer latex particles by the method of soapless emulsion polymerization. Following the first process, the second process was to polymerize MMA, MAA, 3,3-(trimethoxysilyl) propyl methacrylate (MPS), and ethylene glycol dimethacrylate in the presence of poly(MMA-MAA) latex particles to form the linear poly(MMA-MAA)/crosslinking poly(MMA-MAA-MPS) core–shell latex particles. In the third process, the core–shell latex particles were heated in the presence of ammonia to form the poly(MMA-MAA-MPS) hollow latex particles. A sufficient heating time and high-heating temperature were necessary for the ammonia to dissolve the linear poly(MMA-MAA) core to form a perfect hollow structure. The crosslinking poly(MMA-MAA-MPS) shell was a barrier for the ammonia to diffuse into the latex particles so that the latex particle with the high-crosslinking shell showed an imperfect hollow structure. Besides, the hollow poly(MMA-MAA-MPS) latex particles reacted with ZnO nanoparticles, which were synthesized by a traditional sol-gel method, to form the polymer/inorganic poly(MMA-MAA-MPS)/ZnO composite hollow latex particles. With the increase of crosslinking degree would increase the amount of ZnO bonding. Moreover, the poly(MMA-MAA-MPS) hollow latex particles were used as carriers to load with the model drug, caffeine. The release of caffeine from poly(MMA-MAA-MPS) hollow latex particles was investigated.  相似文献   

20.
宛焱  梁亮 《精细化工》2014,31(8):937-940,945
采用核壳乳液聚合法制备聚甲基丙烯酸甲酯(MMA)-甲基丙烯酸(MAA)-丙烯酸丁酯(BA)为亲水核,聚苯乙烯(St)-丙烯腈(AN)-二乙烯苯(DVB)为疏水硬壳的核壳型乳液,然后进行碱溶胀处理,制得具有中空结构的遮盖性空心乳液。考察了MAA用量、核壳比(核单体与壳单体的质量之比,下同)对空心乳液中空度及遮盖性的影响,并利用透射电镜(TEM)、扫描电镜(SEM)对空心乳液的结构形态进行了表征。结果表明,当核单体中MAA用量为核单体总量的30%(质量分数),核壳比为1∶6时,乳胶粒的中空度约为50%,空心乳液遮盖性最强,应用于水性油墨中能够获得良好的综合性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号