共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a cutting force model for self-propelled rotary tool (SPRT) cutting force prediction using artificial neural networks (ANN) has been introduced. The basis of this approach is to train and test the ANN model with cutting force samples of SPRT, from which their neurons relations are gradually extracted out. Then, ANN cutting force model is achieved by obtaining all weights for each layer. The inputs to the model consist of cutting velocity V, feed rate f, depth of cut ap and tool inclination angle λ, while the outputs are composed of thrust force Fx, radial force Fy and main cutting force Fz. It significantly reduces the complexity of modeling for SPRT cutting force, and employs non-structure operator parameters more conveniently. Considering the disadvantages of back propagation (BP) such as the convergence to local minima in the error space, developments have been achieved by applying hybrid of genetic algorithm (GA) and BP algorithm hence improve the performance of the ANN model. Validity and efficiency of the model were verified through a variety of SPRT cutting samples from our experiment tested in the cutting force model. The performance of the hybrid of GA–BP cutting force model is fairly satisfactory. 相似文献
2.
Turning with a spinning insert called actively driven rotary tool (ADRT), where the cutting tool revolves by a powered and programmable spindle, is investigated from the thermal aspects. Dry and MQL external turning tests of austenitic stainless steel (AISI 304) and heat-resistant Ni-based alloy (Inconel 718) are carried out. The tool temperature at the flank face is measured using a newly assembled fiber-coupled two-color pyrometer. In dry turning of AISI 304 steel, the tool temperature decreases from approximately 730 °C to 640 °C as the tool rotation speed increases from 10 m/min to 200 m/min. 相似文献
3.
Mechanics of boring operations are presented in the paper. The distribution of chip thickness along the cutting edge is modeled as a function of tool inclination angle, nose radius, depth of cut and feed rate. The cutting mechanics of the process is modeled using both mechanistic and orthogonal to oblique cutting transformation approaches. The forces are separated into tangential and friction directions. The friction force is further projected into the radial and feed directions. The cutting forces are correlated to chip area using mechanistic cutting force coefficients which are expressed as a function of chip-tool edge contact length, chip area and cutting speed. For tools which have uniform rake face, the cutting coefficients are predicted using shear stress, shear angle and friction coefficient of the material. Both approaches are experimentally verified and the cutting forces in three Cartesian directions are predicted satisfactorily. The mechanics model presented in this paper is used in predicting the cutting forces generated by inserted boring heads with runouts and presented in Part II of the article [1]. 相似文献
4.
This paper addresses modeling of the tool temperature distribution in self-propelled rotary tool (SPRT) machining of hardened steels. Since tool life is significantly influenced by cutting temperatures, a model is developed to analyze the heat transfer and temperature distribution in rotary tool turning of hardened 52100 steel (58 HRC). The model is based on the moving heat source theory of conduction and employs the finite element method (FEM) for its solution. The model is experimentally verified through measurements of the cutting tool temperature distribution using an infrared camera under different cutting conditions. Finally, both rotary and equivalent fixed tool cutting processes are compared in terms of cutting tool temperatures generated. 相似文献
5.
Machining of titanium at high cutting speeds such as from 4 m/s to 8 m/s is very challenging. In this paper, a new generation of driven rotary lathe tool was developed for high-speed machining of a titanium alloy, Ti–6Al–4V. The rotary tool was designed and fabricated based on the requirements of compact structure, sufficient stiffness and minimal edge runout. Cylindrical turning experiments were conducted using the driven rotary tool (DRT) and a stationary cutting tool with the same insert, for comparison in the high-speed machining of Ti–6Al–4V. The results showed that the DRT can significantly increase tool life. Increase in tool life of more than 60 times was achieved under certain conditions. The effects of the rotational speed of the insert were also investigated experimentally. Cutting forces were found to decline slightly with increase of the rotational speed. Tool wear appears to increase with the rotational speed in a certain speed range. 相似文献
6.
Experimental results obtained during oblique cutting of annealed steel Ck 45 (SAE-AISI 1045) with a single-edged tool are presented. Extensive measurements of forces, cutting ratio, chip flow angle etc. have been carried out under a wide range of cutting conditions. The measured data obtained from these cutting tests are used to test assumptions proposed in the first part of this work. In relation to previous works dealing with oblique cutting problems the present one extends to tools with angles of tool obliquity ranging from 30° to 70° and having a large negative rake angle. 相似文献
7.
An online high temperature capillary electrophoresis instrument (HotUCE), a potentiometer and an ion chromatograph were used in studies on corrosive ions and changes in potential at normal pulping process temperatures in experimental liquors modelling pulp cooking processes at mills. The aim was to evaluate the stress corrosion cracking (SCC) susceptibility of stainless steels. The HotUCE instrument and the potentiometer were online coupled with an autoclave, where welded duplex stainless steel samples were immersed for 500 h in simulated high ionic strength hot black liquor (HBL), hot white liquor (HWL) or green liquor (GL) at 130, 150 or 170 °C, respectively. The results showed that only minor amounts of oxidized sulphur compounds were formed. The concentrations of corrosive sulphur anions were calculated against sulphur standards. Amounts of sulphur species in the liquor correlated with the changes in the potential of the duplex stainless steel specimens during the cooking experiments. The formation of sulphite during cooking was greater in HWL than in HBL. Changes in the potential showed that reduction processes occurred during the SCC tests. The results indicate that the SCC risk is enhanced at higher temperatures, probably, due to the increased formation of thiosulphate. 相似文献
8.
Carbon fiber reinforced silicon carbide matrix (C/SiC) composites have great potential in space applications because of their excellent properties such as low density, superior wear resistance and high temperature resistance. However, the use of C/SiC has been hindered seriously because of its poor machining characteristics. With an objective to improve the machining process of C/SiC composites, rotary ultrasonic machining (RUM) and conventional drilling (CD) tests with a diamond core drill were conducted. The effects of ultrasonic vibration on mechanical load and machining quality were studied by comparing the drilling force, torque, quality of holes exit and surface roughness of drilled holes between the two processes. The results showed that the drilling force and torque for RUM were reduced by 23% and 47.6%, respectively of those for CD. In addition, the reduction in drilling force and torque decreased gradually with increasing spindle speed, while they changed slightly with increasing feed rate. Under identical conditions, RUM gave better holes exit than CD. Moreover, because of the lower lamellar brittle fracture and pit originating from carbon fibers fracture, the roughness of surface of drilled holes obtained with RUM was lower than CD and the maximum reduction was 23%. 相似文献
9.
Cutting forces in intermittent metal cutting at small cutting depths were investigated by single edge experiments. Single cutting strokes were performed in a modified Charpy pendulum tester which offers cutting and thrust force measurement and accurate selection of cutting speed and feed in ranges typical for many intermittent high speed steel (HSS) tool operations. The cutting performance of a number of double rake HSS edges, with primary rake angles ranging from +20° (“parrot bill”) to −60°, all with a preground 0.1 mm flank length were tested in two steel grades (one plain carbon and one austenitic stainless). Some of the edge geometries were tested also in TiN coated condition. The relative performance of the different edges was investigated with respect to specific cutting and thrust forces. The influence of cutting length and depth, edge micro geometry, TiN coating and cutting speed is discussed specifically. Among the most important observations were: • The cutting and thrust forces at a fixed cutting depth may change significantly during the short (25–30 mm) cuts. • The chamfer formed by a double rake geometry with negative primary angle increases the forces. • For these chamfered tools the forces increase linearly with the projected flank length. TiN coating increases rather than reduces the forces during these short cuts.
The relationships between the varied parameters and chip formation phenomena like dead zone formation, chip curl and surface finish were presented in part 1 of this paper. 相似文献
10.
On-line monitoring of tool cutting conditions and tool breakage is very important for automated factories of the future. In this paper, the time series based tooth period modeling technique (TPMT) is proposed for detecting tool breakage by monitoring a cutting force or torque signal in any direction. TPMT uses the fast a posteriori error sequential technique (FAEST) for on-line modeling of cutting force or torque signals. Tool breakage is detected by evaluating variations of the characteristics of the monitored signal in each tooth period. TPMT was tested on simulated and experimental end milling data. The proposed technique detected tool breakage in all of the test cases without giving any false alarms in the transition cases. 相似文献
11.
One of the most important objectives in manufacturing is the intelligent machining system. To come to such a solution, the tool wear has to be determined on-line during the cutting process on unmanned machining systems. This contribution discusses the results experimentally obtained in face milling with a new rotating dynamometer. The paper introduces the concept of tool wear indicators which can be determined by simple analysis of the feature parameters of cutting force signals. The disturbance of the cutting force signals obtained by using the rotating dynamometer can be solved by applying tool wear indicators such as Normalized Cutting Force indicator (NCF) and Torque-Force Distance indicator (TFD). The Method for Tool Wear Estimation—TWEM is proposed. 相似文献
12.
The paper proposes a method to obtain reliable measurements of tool life in turning, discussing some aspects related to experimental procedure and measurement accuracy. The method (i) allows an experimental determination of the extended Taylor's equation, with a limited set of experiments and (ii) provides a basis for the quantification of tool life measurement uncertainty. The procedure was applied to cutting fluid efficiency evaluation. Six cutting oils, five of which formulated from vegetable basestock, were evaluated in turning. Experiments were run in a range of cutting parameters, according to a 2 3–1 factorial design, machining AISI 316L stainless steel with coated carbide tools. Tool life measurements were associated to an estimation of their uncertainty, and it was found that by taking three repetitions the uncertainty calculated with a coverage factor of two was on average three times bigger than the experimental standard deviation. 相似文献
13.
As one of the cost-effective machining methods for advanced ceramics, rotary ultrasonic machining (RUM) has attracted much attention and there exist numerous publications on the process. However, few investigations on tool wear in the RUM process have been reported. This paper, for the first time in literature, presents an experimental observation on tool wear in RUM of silicon carbide (SiC). It first reviews some related wear mechanisms for grinding wheels and some techniques for studying the wheel wear mechanisms. After describing the experimental procedures, it presents and discusses the results on tool wear and cutting forces in RUM of SiC. It also discusses some practical implications of the findings from this study. 相似文献
14.
Solutions are needed for increasing the material removal rate without degrading surface quality in micro-electrical discharge machining (μ-EDM). This paper presents a new method that consists of suspending micro-MoS 2 powder in dielectric fluid and using ultrasonic vibration during μ-EDM processes. The Taguchi method is adopted to ascertain the optimal process parameters to increase the material removal rate of dielectric fluid containing micro-powder in μ-EDM using a L 18 orthogonal array. Pareto analysis of variance is employed to analyze the four machining process parameters: ultrasonic vibration of the dielectric fluid, concentration of micro-powder, tool electrode materials, and workpiece materials. The results show that the introduction of MoS 2 micro-powder in dielectric fluid and using ultrasonic vibration significantly increase the material removal rate and improves surface quality by providing a flat surface free of black carbon spots. 相似文献
15.
This paper presents a model for the prediction of cutting forces in the ball-end milling process. The steps used in developing the force model are based on the mechanistic principles of metal cutting. The cutting forces are calculated on the basis of the engaged cut geometry, the underformed chip thickness distribution along the cutting edges, and the empirical relationships that relate the cutting forces to the undeformed chip geometry. A simplified cutter runout model, which characterizes the effect of cutter axis offset and tilt on the undeformed chip geometry, has been formulated. A model building procedure based on experimentally measured average forces and the associated runout data is developed to identify the numerical values of the empirical model parameters for the particular workpiece/cutter combination. 相似文献
16.
Chip formation in intermittent metal cutting at small cutting depths was investigated by single edge experiments. Single cutting strokes were performed in a modified Charpy pendulum tester which offers force measurement, accurate selection of cutting speed and feed in the ranges typical of many intermittent high speed steel (HSS) tool operations. The pendulum is also provided with an excellent quick-stop mechanism. The cutting performance of HSS tools in three widely used steel grades (including one plain carbon, one quenched and tempered and one austenitic stainless steel) was studied. A number of double rake micro geometries, with primary rake angles ranging from +20° (parrot bill) to −60°, all with a prepared 0.1 mm wear land were tested. The performance of the different edge geometries was investigated with respect to class of dead zone developed on the cutting edge, and its relation to chip curl and finish of the cut surface. The results are visualized in a dead zone map. The influence of cutting length, cutting speed, cutting depth and TiN-coating was treated specifically. Among the most important observations were: • the micro geometry of the edge influences the dead zone formation mechanism and hence the class of dead zone, • the surface finish is strongly dead zone class dependent, • the chip curl is determined by edge micro geometry and dead zone class.
The relationships between the varied parameters, generated dead zones and resulting cutting forces are presented in part 2 of this paper. 相似文献
17.
In the conventional use of vibration-assisted machining the vibratory motion is applied to the tool either linearly along the direction of the cutting velocity or elliptically in the plane containing the cutting velocity and surface normal. In contrast to this, this study investigates vibrations that are applied along the cutting edge and perpendicular to the cutting velocity. Such a vibratory motion is expected to provide a small sawing action that will enhance the ductile fracture occurring ahead of the cutting tool as the chip separates from the bulk work material. This enhancement in fracture will then contribute to reducing the chip thickness and cutting forces. Also, the sawing action reduces the imprint left behind by the cutting tool leading to a better surface finish. To confirm these predictions orthogonal cutting with the assistance of transverse vibrations applied to the cutting tool are performed on Al-2024 tubes using a carbide cutting tool. Experiments are performed at different conditions of cutting speeds, feeds and amplitudes of vibration at a fixed vibration frequency of 40 kHz. Cutting forces, chip thickness, and surface finishes are measured and compared with similar cutting conditions without application of vibration. In general, a reduction in cutting forces and feed forces is observed when transverse vibrations are applied. Chip thickness is also reduced and surface finish is improved upon application of vibration. Some explanations are offered to support these results. 相似文献
18.
以实际拉深制件为例,介绍了一种在级进模中进行侧向旋切的模具结构,详细阐述了旋切工作原理与过程,介绍了旋切模具结构和主要零件设计的要点。该模具结构能够大大提高生产效率,具有一定的通用性,值得推广。 相似文献
19.
The purpose of this paper is to present a developed cutting force model for multi-toothed cutting processes, including a complete set of parameters influencing the cutting force variation that has been shown to occur in face milling, and to analyse to what extent these parameters influence the total cutting force variation for a selected tool geometry. The scope is to model and analyse the cutting forces for each individual tooth on the tool, to be able to draw conclusions about how the cutting action for an individual tooth is affected by its neighbours.A previously developed cutting force model for multi-toothed cutting processes is supplemented with three new parameters; eccentricity of the spindle, continuous cutting edge deterioration and load inflicted tool deflection influencing the cutting force variation. A previously developed milling force sensor is used to experimentally analyse the cutting force variation, and to give input to the cutting force simulation performed with the developed cutting force model.The experimental results from the case studied in this paper show that there are mainly three factors influencing the cutting force variation for a tool with new inserts. Radial and axial cutting edge position causes approximately 50% of the force variation for the case studied in this paper. Approximately 40% arises from eccentricity and the remaining 10% is the result of spindle deflection during machining. The experimental results presented in this paper show a new type of cutting force diagrams where the force variation for each individual tooth when two cutting edges are engaged in the workpiece at the same time. The wear studies performed shows a redistribution of the individual main cutting forces dependent on the wear propagation for each tooth. 相似文献
20.
A major challenge in laser fusion cutting of thick-section ceramics is to overcome the thermal-stress induced cracking, which leads to catastrophic breakdown of the material integrity. In order to achieve crack-free cutting of ceramics, it is important to understand the mechanism of the transient temperature field and resulting stress distribution effect on crack formation. In this paper, both experimental and theoretical investigations are reported to understand crack formation characteristics in fibre laser cutting of thick-section Al 2O 3 ceramics. A three-dimensional (3D) finite element (FE) model for simulation of the transient temperature field and thermal-stress distribution together with material removal in laser cutting was developed. Crack formation characteristics were predicted by the model and validated by experiments. The effects of four process parameters i.e. laser peak power, pulse duration, pulse repetition rate and feed rate on temperature field, resulting stress distribution and potential crack formation were also investigated in this work. The study indicates that a transition from compressive to tensile stresses can be resulted in as the laser cutting parameters change, which is beneficial to resist the crack formation. Based on the experimental and numerical investigations, the process parameters were optimised and the fibre laser crack-free cutting of 6-mm-thick alumina was demonstrated for the first time. 相似文献
|