首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pt catalyst supported on carbon nanofibers (CNFs) has been prepared via ion-exchange and it was characterized by XRD, TEM, N2 physisorption and CO chemisorption. The Pt/CNF catalyst has a small Pt crystallite size in the range of 2–3 nm. This catalyst has been tested in the dehydrogenation of decalin, which is a cycloalkane proposed in the literature as H2 storage media for vehicles and portable devices. The objective is finding a Pt catalyst suitable for in situ generation of H2 from chemical storage in decalin. The results revealed that Pt supported on CNF outperforms a Pt catalyst supported on micro–mesoporous activated carbon. Finally, we propose a reactor configuration aiming at the intensification of H2 production in continuous.  相似文献   

2.
Platelet and fishbone carbon nanofibers (CNFs) have been used as supports for cobalt Fischer–Tropsch catalysts. The activity and selectivity of the CNF supported catalysts have been studied at 483 K, 20 bar, and H2/CO = 2.1, and compared with corresponding activity and selectivity for α-Al2O3 and γ-Al2O3 supported cobalt catalysts. The platelet CNF supported catalyst has demonstrated high activity and high selectivity to C5+ hydrocarbons, with activity comparable with Co/γ-Al2O3 and selectivity comparable with Co/α-Al2O3.  相似文献   

3.
We report the growth of carbon nanoflakes (CNFs) on Si substrate by the hot filament chemical vapor deposition without the substrate bias or the catalyst. CNFs were grown using the single wall carbon nanotubes and the multiwall carbon nanotubes as the nucleation center, in the Ar-rich CH4–H2–Ar precursor gas mixture with 1% CH4, at the chamber pressure and the substrate temperature of 7.5 Torr and 840 °C, respectively. In the H2-rich condition, CNF synthesis failed due to severe etch-removal of carbon nanotubes (CNTs) while it was successful at the optimized Ar-rich condition. Other forms of carbon such as nano-diamond or mesoporous carbon failed to serve as the nucleation centers for the CNF growth. We proposed a mechanism of the CNF synthesis from the CNTs, which involved the initial unzipping of CNTs by atomic hydrogen and subsequent nucleation and growth of CNFs from the unzipped portion of the graphene layers.  相似文献   

4.
Carbon nanofibers (CNFs) of high graphitization degree were prepared by a CVD process at 550-700 °C. They showed different structures according to catalyst and preparation temperatures. The structure of CNF prepared from CO/H2 over an iron catalyst was controlled from platelet (P) to tubular (T) by raising the decomposition temperature from 550 to 700 °C. The CNFs prepared over a copper-nickel catalyst from C2H4/H2 showed the typical herringbone (HB) structure regardless of the reaction temperatures. The CNFs prepared over Fe showed d002 of 0.3363-0.3381 nm, similar to that of graphite, indicating very high graphitization degree in spite of the low preparation temperature. Such CNFs of high graphitization degree showed high capacity of 297-431 mA h/g, especially in the low potential region. However, low first cycle coulombic efficiency of ≈60% is a problem to be solved. The graphitization of the CNF preserved the platelet texture, however, and formed the loops to connect the edges of the graphene sheets. Higher graphitization temperatures made the loop more definite. The graphitized CNF showed high capacity (367 mA h/g); however, its coulombic efficiency was not so large despite its modified edges by graphitization, indicating that the graphene edges were not so influential for the irreversible reaction of Li ion battery.  相似文献   

5.
Entangled carbon nanofibers (CNFs) were synthesized on a flexible carbon fabric (CF) via water-assisted chemical vapor deposition at 800°C at atmospheric pressure utilizing iron (Fe) nanoparticles as catalysts, ethylene (C2H4) as the precursor gas, and argon (Ar) and hydrogen (H2) as the carrier gases. Scanning electron microscopy, transmission electron microscopy, and electron dispersive spectroscopy were employed to characterize the morphology and structure of the CNFs. It has been found that the catalyst (Fe) thickness affected the morphology of the CNFs on the CF, resulting in different capacitive behaviors of the CNF/CF electrodes. Two different Fe thicknesses (5 and 10 nm) were studied. The capacitance behaviors of the CNF/CF electrodes were evaluated by cyclic voltammetry measurements. The highest specific capacitance, approximately 140 F g−1, has been obtained in the electrode grown with the 5-nm thickness of Fe. Samples with both Fe thicknesses showed good cycling performance over 2,000 cycles.  相似文献   

6.
Carbon nanofibers (CNFs) were grown via the chemical vapor deposition of C2H4 on an activated carbon (AC)-supported Ni catalyst. The texture of the CNF/AC composites can be tuned by varying the growth temperature and by treatment in reducing atmosphere prior to C2H4/H2 exposure. The Ni-catalyzed gasification of the AC support increases the microporosity of the composite and shown to be dominant throughout the composite synthesis especially during reduction, subsequent treatment in reducing atmosphere, and CNF growth at low temperatures. N2 isotherm and scanning electron microscope were used to characterize the texture and morphology of the composites. Subsequent treatment in reducing atmosphere were shown to increase the Ni catalyst activity to grow CNFs. High resolution transmission electron microscope however did not reveal any microstructural difference for Ni catalyst with and without the subsequent reduction treatment. We propose in this paper that the carbon dissolutions during treatment of the catalyst might have an implication on the CNF growth.  相似文献   

7.
The objective of the present study was to select the optimal catalyst and operating conditions for the manufacture of C9-alcohol, using C9-aldehyde and hydrogen, in a trickle bed reactor. When CaO, Ce2O3 or MgO was added as a promoter to the Ni/kieselguhr catalyst, the BET and Ni surface areas were increased. In the reaction for the manufacture of C9-alcohol, using C9-aldehyde and hydrogen in a batch reactor, a Ni–MgO/kieselguhr catalyst showed the highest activity. In addition, the catalyst using Na2CO3 as a precipitant showed the highest activity. According to the result of an experiment to find the optimal reaction conditions for C9-alcohol synthesis, using C9-aldehyde and hydrogen in a trickle bed reactor loaded with Ni–MgO/kieselguhr catalyst, the highest yield of C9-alcohol was 91.5 wt% at 130 °C, 400 psi and WHSV = 3. The C9-aldehyde hydrogenation performance of the Ni–MgO/kieselguhr catalyst was similar to that of a Cu/ZnO/Al2O3 catalyst, but superior to that of Cu–Ni–Cr–Na/Al2O3 and Ni–Mo/Al2O3 catalysts. In a long-term catalysis test, the Ni–MgO/kieselguhr catalyst showed higher stability than the Cu/ZnO/Al2O3 catalyst.  相似文献   

8.
Atsushi Tanaka  Isao Mochida 《Carbon》2004,42(7):1291-1298
The morphological changes of Fe-Ni catalyst for the preparation of carbon nanofiber (CNF) were examined at 5 steps; (1) the precipitation of Fe-Ni carbonate from Fe-Ni nitrate solution, (2) the calcination of Fe-Ni carbonate into Fe-Ni oxide, (3) the reduction of Fe-Ni oxide, (4) the second reduction of Fe-Ni metal before the growth of CNF, and (5) the reaction with CO/H2 for the growth of CNF. The Fe-Ni fine particle was formed from the Fe-Ni aggregate through the second reduction and successive CNF growth from CO/H2. The temperature of these two steps is the most important factor which determines the size and shape of the Fe-Ni fine particle as a catalyst for CNF growth. The lower temperature of 580 °C provided hexagonal particles with very smooth surface sized around 100-200 nm which allowed the growth of platelet CNFs of the same diameter and cross-sectional shape of the formed catalyst particle. At the higher temperature of 630 °C, the Fe-Ni aggregate was found to give the very fine Fe-Ni particles by the two steps; the first step did the Fe-Ni particle sized around 100-500 nm which was successively degraded into smaller particles sized around 20-40 nm, thinner tubular CNFs growing with the contact of CO/H2. Such smaller particles definitely originated from as-precipitated Fe-Ni carbonate through the steps. The metal particle on the top of CNF was almost exclusively composed of Fe although the catalyst particle before the growth of CNFs carried around 65% of iron and 35% of nickel. The preferential activity of Fe to CO gas may cause such the selectivity. The major role of Ni in the present reaction should be limited to provide the uniform particle of Fe. Controlling the size of the Fe-Ni particle through the reduction and reaction steps was proved to be a key factor to determine the dimension and structure of resultant CNF.  相似文献   

9.
Ping Li  Wei-Kang Yuan 《Carbon》2005,43(13):2701-2710
Catalytically grown carbon nanofibers (CNFs) are shaped into pellets in desired size and configuration by a conventional molding process so as to extend the potential applications of CNFs in industrial heterogeneous catalysis. After shaping, a novel carbon nanofiber composite with sufficient mechanical strength is produced, in which isolated CNFs are connected by a carbon network formed through polymer binder carbonization. Characterization of the synthesized CNF composite is performed by using HRTEM, XRD, Raman, N2 physisorption, TPD and TGA. A comparison of the textural and structural properties, as well as the surface chemistry is made amongst the CNFs, the CNF composite, and a commercial coal-based activated carbon, in order to attain a comprehensive understanding of the CNF composite. The results show that the CNF composite preserves the mesoporous texture of the CNFs which will be beneficial to those reactions of mass transfer control. The modification effect of oxidative treatments on physico-chemical properties of the CNF composite is also investigated. More surface oxygen-containing groups are introduced to the composite by treating the material either in boiling HNO3 solution or in static air at 400 °C.  相似文献   

10.
Microporous HZSM-5 zeolite and mesoporous SiO2 supported Ru–Co catalysts of various Ru adding amounts were prepared and evaluated for Fischer–Tropsch synthesis (FTS) of gasoline-range hydrocarbons (C5–C12). The tailor-made Ru–Co/SiO2/HZSM-5 catalysts possessed both micro- and mesopores, which accelerated hydrocracking/hydroisomerization of long-chain products and provided quick mass transfer channels respectively during FTS. In the same time, Ru increased Co reduction degree by hydrogen spillover, thus CO conversion of 62.8% and gasoline-range hydrocarbon selectivity of 47%, including more than 14% isoparaffins, were achieved simultaneously when Ru content was optimized at 1 wt% in Ru–Co/SiO2/HZSM-5 catalyst.  相似文献   

11.
A low temperature chemical vapor deposition method is described for converting CH4 into high-quality carbon nanofibers (CNFs) using a Ni catalyst supported on either spinel or perovskite oxides in the presence of CO2. The addition of CO2 has a significant influence on CNF purity and stability, while the CNF diameter distribution is significantly narrowed. Ultimately, the addition of CO2 changes the CNF structure from fishbone fibers to thin multiwalled carbon nanotubes. A new “in situ” cooling principle taking into account dry reforming chemistry and thermodynamics is introduced to account for the structural effects of CO2.  相似文献   

12.
Activated porous carbon nanofibers (CNFs) with three different types of porous structures, which were controlled to contain 1, 4, and 8 wt% of Sn–poly(vinylpyrrolidone) (PVP) precursors in the core region and 7 wt% polyaniline (PAN)–PVP precursors in the shell region during electrospinning, were synthesized using a co-electrospinning technique with H2-reduction. The formation mechanisms of activated porous CNF electrodes with the three different types of samples were demonstrated. The activated porous CNFs, for use as electrodes in high-performance electrochemical capacitors, have excellent capacitances (289.0 F/g at 10 mV/s), superior cycling stability, and high energy densities; these values are much better than those of the conventional CNFs. The improved capacitances of the activated porous CNFs are explained by the synergistic effect of the improved porous structures in the CNF electrodes and the formation of activated states on the CNF surfaces.  相似文献   

13.
The process of selective catalytic reduction of nitrogen oxides by propane in the presence of O2, as well as in the presence or absence of CO, was studied over series of commercial oxide catalysts used in petrochemical processes. For the first time synergistic effect was observed for catalytic systems consisting of mechanical mixtures of Cu–Zn–Ni–Al (catalyst I) + Fe–Cr (catalyst II) and Cu–Zn–Ni–Al (catalyst I) + Ni–Cr (catalyst III). The activity of these mixtures in nitrogen oxides reduction by propane was greater than that of individual components in each case. The worked-out catalytical systems showed high effectivity in the process of simultaneous removal of several toxic components: NO x , CO, hydrocarbons – from model gas mixtures, as well as from real exhausts of automotive transport.  相似文献   

14.
Zirconia/carbon nanofiber composites were prepared by hot pressing and spark plasma sintering with 2.0 and 3.3 vol.% of carbon nanofibers (CNFs). The effects of the sintering route and the carbon nanofiber additions on the microstructure, fracture/mechanical and electrical properties of the CNF/3Y-TZP composites were investigated. The microstructure of the ZrO2 and ZrO2–CNF composites consisted of a small grain sized matrix (approximately 120 nm), with relatively well dispersed carbon nanofibers in the composite. All of the composites showed significantly higher electrical conductivity (from 391 to 985 S/m) compared to the monolithic zirconia (approximately 1 × 10−10 S/m). The spark plasma sintered composites exhibited higher densities, hardness and indentation toughness but lower electrical conductivity compared to the hot pressed composites. The improved electrical conductivity of the composites is caused by CNFs network and by thin disordered graphite layers at the ZrO2/ZrO2 boundaries.  相似文献   

15.
Zirconia supported nickel and cobalt-nickel bimetallic catalysts were prepared and characterized for various physico-chemical properties. The hydrogenation of carbon monoxide was studied over these catalysts in the pressure range of 101.3–1654kPa, temperature range of 513–533K, weight hourly space velocity range of 8–14h–1 and H2/CO mole ratio of 2. Catalysts containing both Co and Ni were found to give higher C5+ hydrocarbons selectivity compared to that containing only Ni. A maximum C5+ hydrocarbons selectivity of 55wt% was obtained at 655kPa pressure, 523K and 9.6h–1 of WHSV with catalyst containing 4.03wt% Co and 2.64wt% Ni. The C2 and C3 olefin contents of the products decreased with increase in pressure. Improved deactivation behavior of the catalysts was observed when operated at high pressure.  相似文献   

16.
Composite materials consisting of ceramic monoliths and carbon nanofibres (CNFs) have been synthesized by catalytic growth of CNFs on the γ-alumina washcoating layer covering the walls of a ceramic monolith. The composites possess a relatively uniform mesoporous layer of CNFs of relatively small diameter. The thin alumina washcoating (ca. 0.1 μm) prevents the CNFs from being trapped inside the alumina pores and hence the CNFs grow freely throughout the washcoating layer to form a uniform layer of CNFs that completely covers the surface of the monolith walls. The growth temperature is found to control the thickness of the CNF layer (2-4 μm), the growth rate of the nanofibres, and the mechanical strength of the resulting CNF-monolith composite. At ideal conditions, a complete adhesion of the CNF layer and higher mechanical strength than the original cordierite monolith can be obtained. The CNF layer has an average pore size of 17 nm with absence of microporosity which renders these monoliths promising candidates for the use as catalyst supports, especially for liquid phase reactions. The CNFs have small diameters (5-30 nm) due to the high dispersion of Ni particles in the growth catalyst and the CNFs exhibit an unusual branched structure.  相似文献   

17.
The effect of Fe content in Ni–Fe–Al oxide nano-composites prepared by the solution-spray plasma technique on their catalytic activity for the high temperature water–gas shift reaction was investigated. The composites showed a hollow sphere structure, with highly dispersed Fe–Ni particles supported on the outer surface of the spheres. When the water–gas shift reaction was performed over an Ni–Al oxide composite catalyst without Fe, undesired CO methanation took place predominantly compared to the water–gas shift reaction, and significant amounts of hydrogen were consumed. When appropriate amounts of Fe were added to the Ni–Al oxide composite catalyst during the plasma process, methanation was suppressed remarkably, without serious loss of activity for the water–gas shift reaction. The catalyst was characterized by STEM, XRD and H2 chemisorption measurements.  相似文献   

18.
Mesoporous carbon nanofibers (CNFs) were prepared by a sol–gel/electrospinning process using phenolic resin precursor as carbon source and triblock copolymer Pluronic F127 as template. The final CNFs were obtained after carbonization of as-spun nanofibers and removal of SiO2. Three samples (C-1, C-2, and C-3) with different pore textures were synthesized. The CNF structures were characterized by scanning and transmission electron microscopy, and N2 adsorption–desorption measurements, demonstrating that the samples consisted of nanofibers with mesopores and the mesopore volumes depended on the amount of tetraethyl orthosilicate in the spinnable sols. According to thermogravimetric analysis, the CNF yields of 2.57%, 2.78%, and 2.13% from the spinnable sols for sample C-1, C-2, and C-3 were obtained, respectively. The mesoporous CNFs were used as highly efficient adsorbents for large dye molecules. The relationship between the pore textures and adsorption properties was studied. It is suggested that the adsorption of different dyes depend on an appropriate pore size distribution in addition to surface area. However, the adsorption capacity of the regenerated adsorbents gradually decreased with the number of regeneration cycles. The adsorption of acid red 1 could reach 186 mg g?1 for C-3 after seven regeneration cycles. Furthermore, the mechanical strength of CNFs needs improvement.  相似文献   

19.
In the hydrogenation of CO at atmospheric pressure, unsupported molybdenum carbide catalyst produced mostly C1-C5 paraffins. Promotion of the catalyst with K2CO3 yielded C2-C5 hydrocarbons consisting of 80–100% olefins and reduced the methane selectivity. The selectivity of C2-C5 olefins among all hydrocarbon products was 50–70 wt% at CO conversions up to 70%.This work has been supported by Korean Science and Engineering Foundation through a contract 88-03-1302.  相似文献   

20.
Core/shell nanostructured carbon materials with carbon nanofiber (CNF) as the core and a nitrogen (N)-doped graphitic layer as the shell were synthesized by pyrolysis of CNF/polyaniline (CNF/PANI) composites prepared by in situ polymerization of aniline on CNFs. High-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared and Raman analyses indicated that the PANI shell was carbonized at 900°C. Platinum (Pt) nanoparticles were reduced by formic acid with catalyst supports. Compared to the untreated CNF/PANI composites, the carbonized composites were proven to be better supporting materials for the Pt nanocatalysts and showed superior performance as catalyst supports for methanol electrochemical oxidation. The current density of methanol oxidation on the catalyst with the core/shell nanostructured carbon materials is approximately seven times of that on the catalyst with CNF/PANI support. TEM tomography revealed that some Pt nanoparticles were embedded in the PANI shells of the CNF/PANI composites, which might decrease the electrocatalyst activity. TEM-energy dispersive spectroscopy mapping confirmed that the Pt nanoparticles in the inner tube of N-doped hollow CNFs could be accessed by the Nafion ionomer electrolyte, contributing to the catalytic oxidation of methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号