共查询到20条相似文献,搜索用时 0 毫秒
1.
Bedload Transport in Gravel-Bed Streams with Unimodal Sediment 总被引:1,自引:0,他引:1
Bedload transport in many gravel-bed streams becomes highly complicated because of the nonuniformity of the grain size and the vertical stratification of channel bed material. A new relation for computing bedload transport rates in gravel-bed streams is proposed here. In an effort to account for the variation of the makeup of the surface material within a wide range of Shields stresses, the relation employs a two-parameter approach, one related to the material in the pavement and the other to that in the subpavement layers. The mode is used to represent the grain sizes of each layer. Available bedload transport data from gravel-bed streams with unimodal sediment are used to test the accuracy of the relation. A comparison with other bedload transport relations is also considered. 相似文献
2.
Paul DeVries 《Canadian Metallurgical Quarterly》2002,128(11):983-991
A field investigation in ten gravel bed stream reaches determined that substrate disturbance depth associated with a moving bedload layer was a small multiple of the bed surface D90. Disturbance depth during plane bed transport of coarse, heterogeneous mixtures appeared similar in magnitude to particle exchange depth and moving layer thickness. Maximum disturbance depth was distributed approximately uniformly over the most active areas of the streambed when local scour and fill were negligible. The distribution upper bound was the smaller of approximately 1.5 times the competent grain size or twice the surface D90, and was invariant with flow strength once the largest grains present were mobilized. Disturbance depth did not scale with grain sizes smaller than D50 when larger grains were mobilized. Thicker traction carpets were not predicted to occur because much larger shear stresses then observed naturally were needed to mobilize two or more layers of the bed simultaneously. Bedload transport rate in coarse streambeds is suggested to increase primarily with mobile fraction of bed surface area and grain velocity, than with layer thickness. 相似文献
3.
An existing two-dimensional mobile-bed hydrodynamic model has been modified to simulate bed-load transport in a complex gravel-bed river. We investigated the sensitivity of predicted bed load to control parameters, and compared model predictions of flow depth, shear stress, and gravel transport with field measurements made from the river. The predictions are based on concurrent field data of flow discharge, water level, and sediment for model input. The model takes into account multiple-fraction transport rates, and continuously updates the river bed and surface grain-size distribution. The model predictions are in reasonable agreement with field measurements. 相似文献
4.
Athol D. Abrahams 《Canadian Metallurgical Quarterly》2003,129(2):159-163
When open-channel flows become sufficiently powerful, the mode of bed-load transport changes from saltation to sheet flow. Where there is no suspended sediment, sheet flow consists of a layer of colliding grains whose basal concentration approaches that of the stationary bed. These collisions give rise to a dispersive stress that acts normal to the bed and supports the bed load. An equation for predicting the rate of bed-load transport in sheet flow is developed from an analysis of 55 flume and closed conduit experiments. The equation is ib = ω where ib = immersed bed-load transport rate; and ω = flow power. That ib = ω implies that eb = tan?α = ub/u, where eb = Bagnold’s bed-load transport efficiency; ub = mean grain velocity in the sheet-flow layer; and tan?α = dynamic internal friction coefficient. Given that tan?α ≈ 0.6 for natural sand, ub ≈ 0.6u, and eb ≈ 0.6. This finding is confirmed by an independent analysis of the experimental data. The value of 0.60 for eb is much larger than the value of 0.12 calculated by Bagnold, indicating that sheet flow is a much more efficient mode of bed-load transport than previously thought. 相似文献
5.
Critical Shear Stress of Bimodal Sediment in Sand-Gravel Rivers 总被引:1,自引:0,他引:1
A new model for the critical shear stress and the transport of graded sediment is presented. The model is based on the size distribution of the bed surface and can be used to compute sediment transport rates in numerical simulations with an active layer model. This model makes a distinction between unimodal and bimodal sediments. It is assumed that all size fractions of unimodal sediments have the same critical shear stress while there is selective transport for the gravel fractions of bimodal sediments. A recently published laboratory transport data set is used to calibrate our model. 相似文献
6.
A deconvolution procedure is presented to estimate the probability density function of bedload transport velocity from noisy stationary data collected using the bottom tracking feature of acoustic Doppler current profilers (aDcps). The procedure involves the optimization of a computational summation of random variables for the instrument noise (assumed to be Gaussian with zero mean) and the spatially averaged bedload velocity within the insonified area of each acoustic beam (V). The procedure was tested on two aDcp time series, measured in two different gravel-bed rivers (Fraser River and Norrish Creek). Models generated using either a semitheoretical compound Poisson-gamma distribution or an empirical gamma distribution for V were similar and did not differ significantly from the distribution of the original data. Optimized distributions for V were highly positively skewed. The instrument noise was comparable to instrument noise for aDcp water velocity measurements, i.e., an order of magnitude greater than typical bottom tracking noise. The deconvolution procedure presented herein is generally applicable for the difficult measurement problem of determining the actual signal distribution when measurements are contaminated by noise, particularly for the case of positive-valued signal contaminated by Gaussian noise. The procedure produced the first field estimates of spatially averaged bedload velocity distribution. 相似文献
7.
Surface-based Transport Model for Mixed-Size Sediment 总被引:6,自引:0,他引:6
We present a transport model for mixed sand/gravel sediments. Fractional transport rates are referenced to the size distribution of the bed surface, rather than subsurface, making the model completely explicit and capable of predicting transient conditions. The model is developed using a new data set of 48 coupled observations of flow, transport, and bed surface grain size using five different sediments. The model incorporates a hiding function that resolves discrepancies observed among earlier hiding functions. The model uses the full size distribution of the bed surface, including sand, and incorporates a nonlinear effect of sand content on gravel transport rate not included in previous models. The model shares some common elements with two previous surface-based transport models, but differs in using the full surface size distribution and in that it is directly developed from a relatively comprehensive data set with unambiguous measurement of surface grain size over a range of flow, transport rate, and sediments. 相似文献
8.
L. Goutière S. Soares-Fraz?o C. Savary T. Laraichi Y. Zech 《Canadian Metallurgical Quarterly》2008,134(6):726-735
This study presents a novel, simple, but rather accurate approximation of the eigenvalues of the system formed by the Saint-Venant–Exner equations, based on the comparison between eigenvalues for the complete system and eigenvalues for the water phase only. Moreover, a strategy is proposed to compute efficiently the intercell fluxes by properly adapting a Harten, Lax, and van Leer scheme for each equation. Two examples of transient transcritical flows are developed: the erosive migration of a knickpoint induced by an increase in the bed slope, and the evolution of a hydraulic jump over a mobile bed. 相似文献
9.
Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-Load Transport 总被引:6,自引:0,他引:6
Leo C. van Rijn 《Canadian Metallurgical Quarterly》2007,133(6):649-667
Attention is given to the properties of sediment beds over the full range of conditions (silts to gravel), in particular the effect of fine silt on the bed composition and on initiation of motion (critical conditions) is discussed. High-quality bed-load transport data sets are identified and analyzed, showing that the bed-load transport in the sand range is related to velocity to power 2.5. The bed-load transport is not much affected by particle size. The prediction of bed roughness is addressed and the prediction of bed-load transport in steady river flow is extended to coastal flow applying an intrawave approach. Simplified bed-load transport formulas are presented, which can be used to obtain a quick estimate of bed-load transport in river and coastal flows. It is shown that the sediment transport of fine silts to coarse sand can be described in a unified model framework using fairly simple expressions. The proposed model is fully predictive in the sense that only the basic hydrodynamic parameters (depth, current velocity, wave height, wave period, etc.) and the basic sediment characteristics (d10, d50, d90, water temperature, and salinity) need to be known. The prediction of the effective bed roughness is an integral part of the model. 相似文献
10.
Effect of Coarse Surface Layer on Bed-Load Transport 总被引:1,自引:0,他引:1
James C. Bathurst 《Canadian Metallurgical Quarterly》2007,133(11):1192-1205
Existing bed-load transport formulas may overestimate the transport rate in mountain rivers by two orders of magnitude or more. Recently published field data sets provide an opportunity to take a fresh look at the bed-load transport relationship and it is hypothesized that the overestimate is due to a failure to account for the effect of a coarse surface layer of bed material inhibiting the release of fine subsurface material. Bed-load transport is determined as gs = aρ(q?qc) where q=water discharge per unit width; qc=critical value for initiation of bed material movement; ρ=water density; and a=coefficient. The gs/q relationship is typically piecewise linear, characterized by two transport phases with, respectively, low and high rates of change. Twenty-one flume and 25 field data sets were used to quantify the relationship for Phase 2. The flume data confirm the dependence of a on S1.5, where S=channel slope, in agreement with earlier studies. The field data additionally show that a varies inversely with the degree of bed armoring, given by the ratio of surface to subsurface bed material size. The finding is consistent with the hypothesis and suggests the need to account for the bed material supply limitation in the bed-load transport formula. However, the available data are not entirely sufficient to rule out an alternative dependency, or codependency, on flow resistance. The critical conditions for initiation of Phase 2 transport are also quantified as a function of bed material size and channel slope. The resulting set of equations allows a more accurate estimation of Phase 2 bed-load transport rates. However, the equations are empirical and should be restricted for use within the range of conditions used in their development, to determine mean rather than instantaneous transport rates and to determine bulk transport rates, not transport by size fraction. 相似文献
11.
Measurement of near-bed sediment velocities with acoustic Doppler current profilers (ADCPs) is an emerging approach for quantifying bed-load sediment fluxes in rivers. Previous investigations of the technique have relied on conventional physical bed-load sampling to provide reference transport information with which to validate the ADCP measurements. However, physical samples are subject to substantial errors, especially under field conditions in which surrogate methods are most needed. Comparisons between ADCP bed velocity measurements with bed-load transport rates estimated from bed-form migration rates in the lower Missouri River show a strong correlation between the two surrogate measures over a wide range of mild to moderately intense sediment transporting conditions. The correlation between the ADCP measurements and physical bed-load samples is comparatively poor, suggesting that physical bed-load sampling is ineffective for ground-truthing alternative techniques in large sand-bed rivers. Bed velocities measured in this study became more variable with increasing bed-form wavelength at higher shear stresses. Under these conditions, bed-form dimensions greatly exceed the region of the bed ensonified by the ADCP, and the magnitude of the acoustic measurements depends on instrument location with respect to bed-form crests and troughs. Alternative algorithms for estimating bed-load transport from paired longitudinal profiles of bed topography were evaluated. An algorithm based on the routing of local erosion and deposition volumes that eliminates the need to identify individual bed forms was found to give results similar to those of more conventional dune-tracking methods. This method is particularly useful in cases where complex bed-form morphology makes delineation of individual bed forms difficult. 相似文献
12.
K. Strom A. N. Papanicolaou N. Evangelopoulos M. Odeh 《Canadian Metallurgical Quarterly》2004,130(6):554-567
This research aims to advance current knowledge on cluster formation and evolution by tackling some of the aspects associated with cluster microtopography and the effects of clusters on bedload transport. The specific objectives of the study are (1) to identify the bed shear stress range in which clusters form and disintegrate, (2) to quantitatively describe the spacing characteristics and orientation of clusters with respect to flow characteristics, (3) to quantify the effects clusters have on the mean bedload rate, and (4) to assess the effects of clusters on the pulsating nature of bedload. In order to meet the objectives of this study, two main experimental scenarios, namely, Test Series A and B (20 experiments overall) are considered in a laboratory flume under well-controlled conditions. Series A tests are performed to address objectives (1) and (2) while Series B is designed to meet objectives (3) and (4). Results show that cluster microforms develop in uniform sediment at 1.25 to 2 times the Shields parameter of an individual particle and start disintegrating at about 2.25 times the Shields parameter. It is found that during an unsteady flow event, effects of clusters on bedload transport rate can be classified in three different phases: a sink phase where clusters absorb incoming sediment, a neutral phase where clusters do not affect bedload, and a source phase where clusters release particles. Clusters also increase the magnitude of the fluctuations in bedload transport rate, showing that clusters amplify the unsteady nature of bedload transport. A fourth-order autoregressive, autoregressive integrated moving average model is employed to describe the time series of bedload and provide a predictive formula for predicting bedload at different periods. Finally, a change-point analysis enhanced with a binary segmentation procedure is performed to identify the abrupt changes in the bedload statistic characteristics due to the effects of clusters and detect the different phases in bedload time series using probability theory. The analysis verifies the experimental findings that three phases are detected in the bedload rate time series structure, namely, sink, neutral, and source. 相似文献
13.
Kristin Bunte Steven R. Abt John P. Potyondy Sandra E. Ryan 《Canadian Metallurgical Quarterly》2004,130(9):879-893
Portable bedload traps (0.3 by 0.2 m opening) were developed for sampling coarse bedload transport in mountain gravel-bed rivers during wadable high flows. The 0.9 m long trailing net can capture about 20 kg of gravel and cobbles. Traps are positioned on ground plates anchored in the streambed to minimize disturbance of the streambed during sampling. This design permits sampling times of up to 1 h, overcoming short-term temporal variability issues. Bedload traps were tested in two streams and appear to collect representative samples of gravel bedload transport. Bedload rating and flow competence curves are well-defined and steeper than those obtained by a Helley–Smith sampler. Rating curves from both samplers differ most at low flow but approach each other near bankfull flow. Critical flow determined from bedload traps is similar using the largest grain and the small transport rate method, suggesting suitability of bedload trap data for incipient motion studies. 相似文献
14.
Bed load discharge formulas have been evaluated by analyzing them in relation to measured Helley–Smith data for the gravel-bedded armored Drau River, Austria. Comparison of calculations with measurements leads to ranking of the formulas that depends on the evaluation parameters. The choice of formula is made with respect to our specific aims: the investigation of individual floods requires a different approach from that of long-term budgets. Formula performance is consistently improved when conditions for the threshold of motion are modified according to data measured up on the initiation of motion. Formulas such as those reported by Parker in 1990, Zanke in 1999, and Sun and Donahue in 2000 are capable of coping with partial transport, which is commonly found in Alpine rivers. These formulas therefore provide encouraging results, particularly after the introduction of modifications. The augmentation of field measurements, even if limited in scope, considerably improves the performance of bed load discharge formulas. 相似文献
15.
Influence of Turbulence on Bed Load Sediment Transport 总被引:2,自引:0,他引:2
B. Mutlu Sumer Lloyd H. C. Chua N.-S. Cheng J?rgen Freds?e 《Canadian Metallurgical Quarterly》2003,129(8):585-596
This paper summarizes the results of an experimental study on the influence of an external turbulence field on the bed load sediment transport in an open channel. The external turbulence was generated by (1) a horizontal pipe placed halfway through the depth h; (2) a series of grids with a clearance of about one-third of the depth from the bed, and extending over a finite length of the flume; and (3) a series of grids with a clearance in the range (0.1–1.0)h from the bed, but extending over the entire length of the flume. Two kinds of experiments were conducted: plane-bed experiments and ripple-covered-bed experiments. In the former case, the flow in the presence of the turbulence generator was adjusted so that the mean bed shear stress was the same as in the case without the turbulence generator in order to single out the effect of the external turbulence on the sediment transport. In the ripple-covered-bed case, the mean and turbulence quantities of the streamwise component of the velocity were measured, and the Shields parameter, due to skin friction, was determined. The Shields parameter, together with the RMS value of the streamwise velocity fluctuations, was correlated with the sediment transport rate. The sediment transport increases markedly with increasing turbulence level. 相似文献
16.
Effect of Sand Supply on Transport Rates in a Gravel-Bed Channel 总被引:1,自引:0,他引:1
In a series of flume experiments using constant discharge, flow depth, and gravel feed rate, sand feed rates were varied from 0.16 to 6.1 times that of gravel. The bed slope decreased with increasing sand supply, indicating that the gravel could be transported at the same rate, along with increasing amounts of sand, at smaller shear stresses. Prediction of river response to an increase in sediment supply requires prediction of mutual changes in bed composition and transport, and therefore a transport model defined in terms of the grain size of the bed surface. A recent model provides satisfactory prediction of the experimental observations and indicates the general response of gravel beds to increased sand supply. An increase in sand supply may increase the sand content of the river bed and the mobility of gravel fractions, which can lead to bed degradation and preferential evacuation of these sediments from the river. 相似文献
17.
Machine Learning Approach to Modeling Sediment Transport 总被引:7,自引:0,他引:7
Inaccuracies of sediment transport models largely originate from our limitation to describe the process in precise mathematical terms. Machine learning (ML) is an alternative approach to reduce the inaccuracies of sedimentation models. It utilizes available domain knowledge for selecting the input and output variables for the ML models and uses modern regression techniques to fit the measured data. Two ML methods, artificial neural networks and model trees, are adopted to model bed-load and total-load transport using the measured data. The bed-load transport models are compared with the models due to Bagnold, Einstein, Parker et al., and van Rijn. The total-load transport models are compared with the models due to Ackers and White, Bagnold, Engelund and Hansen, and van Rijn. With the chosen data sets on bed-load and total-load transport the ML models provided better accuracy than the existing ones. 相似文献
18.
Bed-load transport is commonly evaluated in the condition of a hydrostatic pressure distribution of the flow field; while this condition is reasonable for quasi-steady, quasi-uniform rectilinear flows, it cannot be satisfied in a large variety of flow conditions, i.e., near an obstacle as in the case of a bridge pier. The dimensionless Shields number, which contains the assumption of a hydrostatic pressure distribution in its denominator, therefore cannot be strictly applied to evaluate bed-load transport in all the configurations where nonhydrostatic pressure distributions are observed. In the present work, a generalization of the Shields number is proposed for the case of nonhydrostatic pressure distribution produced by groundwater flow. Experiments showing the effects of vertical groundwater flow on the bed morphodynamics are presented. The comparison between the experimental observations and numerical results, obtained by means of a morphodynamic model which employs the new formulation of the Shields number, suggests that the proposed generalization of the Shields number is able to account the effect of the nonhydrostatic pressure distribution on the bed-load transport. 相似文献
19.
A. N. Papanicolaou Dimitrios C. Dermisis Mohamed Elhakeem 《Canadian Metallurgical Quarterly》2011,137(9):871-883
The bed morphology of mountain rivers is characterized primarily by the presence of distinguishable isolated roughness elements, such boulders or clasts. The objective of this experimental study was to provide a unique insight into the role of an array of clasts in regulating sand movement over gravel beds for low relative submergence conditions, H/dc<1, and flow depth, H, to the diameter of the clast, dc, a process that has not been studied thoroughly. To assess the role of clasts in controlling incoming sand movement, detailed flume experiments were conducted by placing 40 equally spaced clasts atop a well-packed glass bead bed for replicating the isolated roughness flow regime. The experiments were performed for moderate ( ~ 2.50τcr* where τcr* is the critical dimensionless bed shear stress) and high ( ~ 5.50τcr*) applied bed shear stress conditions, representative of gravel bed rivers. For comparison purposes, experiments were also repeated for nearly identical flow conditions but without the presence of clasts to discern the potential effects that clasts may have on sediment movement and hydraulics within the clast array region and also in the upstream section of the clast region where few observations exist. The experimental results revealed the formation of two distinguishable bed morphological features, namely a funnel shaped “sand ridge” upstream from the clast array region and small depositional “sand patches” around individual clasts. The sand patches were formed in the stoss region of the clasts, which contradicted previous observations of depositional patterns around clasts under high relative submergence conditions (H/dc>1) where, in this case, depositional patches were observed to have formed in the clast wake region. Furthermore, most of the incoming sand was found to be intercepted by the evolving sand ridge upstream from the clast array region with implications in the amount of sand entering the clast array region. The exiting bed-load rate was found to be reduced by a factor of ~ 5.0–20, depending on the prevailing flow conditions when experiments with and without clasts were compared under nearly identical flow conditions. The findings of this research, although limited to the isolated roughness regime, may have significant ramifications in stream restoration projects for the design of engineered riffle sections, which typically consist of an array of clasts installed to improve degraded waterways and aquatic habitat. 相似文献
20.
Jesse D. Roberts Richard A. Jepsen Scott C. James 《Canadian Metallurgical Quarterly》2003,129(11):862-871
Soil and sediments play an important role in water management and water quality. Issues such as water turbidity, associated contaminants, reservoir sedimentation, undesirable erosion and scour, and aquatic habitat are all linked to sediment properties and behaviors. In situ analysis is necessary to develop an understanding of the erosion and transport of sediments. Sandia National Laboratories has recently patented the Adjustable Shear Stress Erosion and Transport (ASSET) Flume that quantifies in situ erosion of a sediment core with depth while affording simultaneous examination of transport modes (bedload versus suspended load) of the eroded material. Core erosion rates and ratios of bedload to suspended load transport of quartz sediments were studied with the ASSET Flume. The erosion and transport of a fine-grained natural cohesive sediment were also observed. Experiments using quartz sands revealed that the ratio of suspended load to bedload sediment transport is a function of grain diameter and shear stress at the sediment surface. Data collected from the ASSET Flume were used to formulate a novel empirical relation for predicting the ratio of bedload to suspended load as a function of shear stress and grain diameter for noncohesive sediments. 相似文献