首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Energy and Buildings》1998,27(2):195-205
Besides technical parameters, consumer behavior is the most important issue with respect to energy consumption in households. In this paper, the results of a cross-section analysis of Austrian households are presented. The impact of the following parameters on residential energy demand for space heating have been investigated: (i) thermal quality of buildings; (ii) consumer behavior; (iii) heating degree days; (iv) building type (singleor multi-family dwellings). The result of this investigation provides evidence of a rebound-effect of about 15 to 30% due to building retrofit. This leads to the conclusion that energy savings achieved in practice (and straightforward the reduction in CO2 emissions) due to energy conservation measures will be lower than those calculated in engineering conservation studies. Straightforward, the most important conclusions for energy policy makers are: (i) Standards, building codes, respectively, are important tools to increase the thermal quality of new buildings; and (ii) Due to prevailing low energy prices, a triggering tool has to be implemented which may be rebates or loans.  相似文献   

2.
Europe with more than 600 millions of square meters of air-conditioned office buildings offers an opportunity to save energy and reduce CO2 emissions by reconverting chillers into reversible heat pumps in office buildings. One of the questions asked in the framework of the IEA ECBCS Annex 48 is how to assess the energy saving potential and how to identify the most interesting building cases. The methodology proposed here is based on the simulation of office buildings representative of the building stock. The energy consumption has been simulated for different office building types in five European climatic zones on the one hand with boilers for heating and chillers for cooling, and on the other hand with reversible chillers plus back-up boilers. The results of the simulations in terms of energy consumption allow us to assess the primary energy savings and CO2 emission reduction in Europe by reconverting chillers into reversible heat pumps. The results show that the potential of annual primary energy savings and annual CO2 emission reduction are about 8 TWhPE and 3 millions of tons of CO2 in Europe-15. Even if the temperature level in terminal units can be solved using the cooling coil instead of the heating coil, a back up boiler turns generally out to be required for the coldest days in the year or when simultaneous heating and cooling demands occur.  相似文献   

3.
The existing building stock in European countries accounts for over 40% of final energy consumption in the European Union (EU) member states, of which residential use represents 63% of total energy consumption in the buildings sector. Consequently, an increase of building energy performance can constitute an important instrument in the efforts to alleviate the EU energy import dependency (currently at about 48%) and comply with the Kyoto Protocol to reduce carbon dioxide emissions. This is also in accordance to the European Directive (EPBD 2002/91/EC) on the energy performance of buildings, which is currently under consideration in all EU member states. This paper presents an overview of the EU residential building stock and focuses on the Hellenic buildings. It elaborates the methodology used to determine the priorities for energy conservation measures (ECMs) in Hellenic residential buildings to reduce the environmental impact from CO2 emissions, through the implementation of a realistic and effective national action plan. A major obstacle that had to overcome was the need to make suitable assumptions for missing detailed primary data. Accordingly, a qualitative and quantitative assessment of scattered national data resulted to a realistic assessment of the existing residential building stock and energy consumption. This is the first time that this kind of aggregate data is presented on a national level. Different energy conservation scenarios and their impact on the reduction of CO2 emissions were evaluated. Accordingly, the most effective ECMs are the insulation of external walls (33–60% energy savings), weather proofing of openings (16–21%), the installation of double-glazed windows (14–20%), the regular maintenance of central heating boilers (10–12%), and the installation of solar collectors for sanitary hot water production (50–80%).  相似文献   

4.
According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting systems. This energy declaration must refer to the primary energy or CO2 emissions.The European Organization for Standardization (CEN) has prepared a series of standards for energy performance calculations for buildings and systems. This paper presents related standards for heating systems. The relevant CEN-standards are presented and a sample calculation of energy performance is made for a small single family house, an office building and an industrial building in three different geographical locations: Stockholm, Brussels, and Venice.The additional heat losses from heating systems can be 10-20% of the building energy demand. The additional loss depends on the type of heat emitter, type of control, pump and boiler.  相似文献   

5.
In several housing development projects in Norway the requirements related to the mandatory connection to district heating plants have shown to be a barrier for building low-energy residential buildings. The developers have considered the costs related to both low-energy measures and a space heating system that can utilize district heat to be too high to give the project acceptable profitability. In these projects the developers wanted to use a cheaper electric space heating system. Based on models representative for the range of the Norwegian district heating plants, calculations show that the CO2 emissions related to heating in residential buildings with an energy standard in accordance with the new building regulations and that are connected to the district heating grid, are lower than for similar buildings with a low-energy standard and with heating based on electricity. However, in a long term perspective the differences are marginal when considering the national annual CO2 emissions. Similarly, increased peak power demand due to electricity-based heating may also be regarded as marginal when compared to the present maximum peak power capacity in Norway.  相似文献   

6.
Study on the efficiency of thermal refurbishment of residential buildings in Vienna. In the framework of the Kyoto Protocol Austria has committed to reduce its greenhouse gas emissions until 2008/2012 by 13% on the base of 1990. Therefore the Federal Government as well as the provincial governments have implemented programs for the protection of climate including several measures to reduce the emission of hazardous greenhouse gases mainly CO2. Regarding the enormous potential reduction activities were mainly focused on residential buildings. The refurbishment of the building envelope reduces the heating costs as well as the carbon dioxide emissions and improves the indoor climate. Several investigations were taken to check the utility of thermal refurbishment under structural and physical conditions. Plenty of data available in the line of several expertises of existing residential buildings were analysed and completed by additional investigations. The economic efficiency of thermal insulations is pointed out as well as the period of repayment or the influence of the thickness of insulation on the heating energy demand or possible CO2‐reductions.  相似文献   

7.
In this study the life cycle primary energy use and carbon dioxide (CO2) emission of an eight-storey wood-framed apartment building are analyzed. All life cycle phases are included, including acquisition and processing of materials, on-site construction, building operation, demolition and materials disposal. The calculated primary energy use includes the entire energy system chains, and carbon flows are tracked including fossil fuel emissions, process emissions, carbon stocks in building materials, and avoided fossil emissions due to biofuel substitution. The results show that building operation uses the largest share of life cycle energy use, becoming increasingly dominant as the life span of the building increases. The type of heating system strongly influences the primary energy use and CO2 emission; a biomass-based system with cogeneration of district heat and electricity achieves low primary energy use and very low CO2 emissions. Using biomass residues from the wood products chain to substitute for fossil fuels significantly reduces net CO2 emission. Excluding household tap water and electricity, a negative life cycle net CO2 emission can be achieved due to the wood-based construction materials and biomass-based energy supply system. This study shows the importance of using a life cycle perspective when evaluating primary energy and climatic impacts of buildings.  相似文献   

8.
肖敏  李翰宇  张晓烽 《中国园林》2023,39(1):118-123
现阶段中国城镇化率已超60%,城镇建筑运行能耗约占全国能源消耗总量的16.5%。老旧小区作为城镇建筑的重要存量,推动其绿化改造对改善建筑周围微气候和降低建筑能耗具有重大意义。目前,微气候和建筑能耗的模拟仿真分别基于不同的应用软件,且进行能耗模拟时并未考虑微气候因素对建筑能耗的影响。为定量评价和预测住区绿化改造对建筑周围微气候和建筑能耗的综合影响,基于Grasshopper平台,集合了微气候软件ENVI-met和建筑能耗软件EnergyPlus的模拟计算内核,开发了一种基于单平台耦合2类性能分析算法的协同工作流。研究结果表明,改变树冠透射率可使老旧小区建筑周围局部微气候的时空分布发生明显变化,从而显著改变建筑各楼层的夏季制冷能耗需求;长沙市城镇老旧小区绿化改造宜种植树冠透射率达0.05的树种,可使住宅建筑夏季制冷能耗日降幅最高至29.49kWh。  相似文献   

9.
The estimation of energy consumption and related CO2 emissions from buildings is increasingly important in life-cycle assessment (LCA) studies that have been applied in the design of more energy-efficient building construction systems and materials. This study undertakes a life-cycle energy analysis (LCEA) and life-cycle CO2 emissions analysis (LCCO2A) of two common types of post-disaster temporary houses constructed in Turkey. The proposed model includes building construction, operation and demolition phases to estimate total energy use and CO2 emissions over 15- and 25-year lifespans for container houses (CH) and prefabricated houses (PH) respectively. Energy efficiency and emission parameters are defined per?m2 and on a per capita basis. It is found that the operation phase is dominant in both PH and CH and contributes 86–88% of the primary energy requirements and 95–96% of CO2 emissions. The embodied energy (EE) of the constructions accounts for 12–14% of the overall life-cycle energy consumption. The results show that life-cycle energy and emissions intensity in CH are higher than those for PH. However, this pattern is reversed when energy requirements are expressed on a per capita basis.  相似文献   

10.
Hassan Radhi   《Building and Environment》2009,44(12):2451-2462
There is significant evidence that the world is warming. The International Panel of Climate Change stated that there would be a steady increase in the ambient temperature during the end of the 21st century. This increase will impact the built environment, particularly the requirements of energy used for air-conditioning buildings. This paper discusses issues related to the potential impact of global warming on air-conditioning energy use in the hot climate of the United Arab Emirates. Al-Ain city was chosen for this study. Simulation studies and energy analysis were employed to investigate the energy consumption of buildings and the most effective measures to cope with this impact under different climate scenarios. The paper focuses on residential buildings and concludes that global warming is likely to increase the energy used for cooling buildings by 23.5% if Al-Ain city warms by 5.9 °C. The net CO2 emissions could increase at around 5.4% over the next few decades. The simulation results show that the energy design measures such as thermal insulation and thermal mass are important to cope with global warming, while window area and glazing system are beneficial and sensitive to climate change, whereas the shading devices are moderate as a building CO2 emissions saver and insensitive to global warming.  相似文献   

11.
Climate change can significantly impact on the total energy consumption and greenhouse gas (GHG) emissions of residential buildings. Therefore, climate adaptation should be properly considered in both building design and operation stages to reduce the impact. This paper identified the potential adaptation pathways for existing and new residential buildings, by enhancing their adaptive capacity to accommodate the impact and maintain total energy consumption and GHG emissions no more than the current level in the period of their service life. The feasibility of adaptations was demonstrated by building energy simulations using both representative existing and new housing in eight climate zones varying from cold, temperate to hot humid in Australia. It was found that, in heating dominated climates, a proper level of adaptive capacity of residential buildings could be achieved simply by improving the energy efficiency of building envelop. However, in cooling dominated regions, it could only be achieved by introducing additional measures, such as the use of high energy efficient (EE) appliances and the adoption of renewable energy. The initial costs to implement the adaptations were assessed, suggesting that it is more cost-effective to accommodate future climate change impacts for existing and new houses by improving building envelop energy efficiency in cooling dominated regions, but installing on-site solar PVs instead in heating and cooling balanced regions.  相似文献   

12.
在可持续发展的背景下,减少建筑能耗成为降低全球能耗总量的重要举措之一。在建筑的全生命周期中,设计阶段的建筑设计参数,对整个公共建筑的能耗有着重要影响。采暖空调和照明能耗是公共建筑能耗的重要组成部分,从方案设计阶段考虑影响公共建筑采暖空调和照明能耗的设计参数。将供暖和照明能量负荷之和作为目标函数,基于参数化建模的思想,建立主要设计参数与建筑能耗之间的函数关系。以能耗最小化为目标,采用遗传算法进行优化求解,并通过实例对模型及算法进行了检验。  相似文献   

13.
Modern buildings and their HVAC systems are required to be not only energy-efficient but also produce fewer economical and environmental impacts while adhering to an ever-increasing demand for better environment. Research shows that building regulations which depend mainly on building envelope requirements do not guarantee the best environmental and economical solutions. In the current study, a modified multi-objective optimization approach based on Genetic Algorithm is proposed and combined with IDA ICE (building performance simulation program). The combination is used to minimize the carbon dioxide equivalent (CO2-eq) emissions and the investment cost for a two-storey house and its HVAC system. Heating/cooling energy source, heat recovery type, and six building envelope parameters are considered as design variables. The modified optimization approach performed efficiently with the three studied cases, which address different summer overheating levels, and a set of optimal combinations (Pareto front) was achieved for each case. It is concluded that: (1) compared with initial design, 32% less CO2-eq emissions and 26% lower investment cost solution could be achieved, (2) the type of heating energy source has a marked influence on the optimal solutions, (3) the influence of the external wall, roof, and floor insulation thickness as well as the window U-value on the energy consumption and thermal comfort level can be reduced into an overall building U-value, (4) to avoid much of summer overheating, dwellings which have insufficient natural ventilation measures could require less insulation than the standard (inconsistent with energy saving requirements) and/or additional cost for shading option.  相似文献   

14.
The present article describes the integration of a data-driven predictive demand response control for residential buildings with heat pump and on-site energy generation. The data driven control approach schedules the heating system of the building. In each day, the next 24 hours heating demand of buildings, including space heating and domestic hot water consumption, are predicted by means of a hybrid wavelet transformation and a dynamic neural network. Linear programming is implemented to define a cost-optimal schedule for the heat pump operation. Moreover, the study discusses the impact of heat demand prediction error on performance of demand response control. In addition, the option of energy trading with the electrical grid is considered in order to evaluate the possibility of increasing the profit for private householders through on-site energy generation. The results highlight that the application of the proposed predictive control could reduce the heating energy cost up to 12% in the cold Finnish climate. Furthermore, on-site energy generation declines the total energy cost and consumption about 43% and 24% respectively. The application of a data-driven control for the demand prediction brings efficiency to demand response control.  相似文献   

15.
Energetic renovation of an residential building – measurement and measuring results of an “3 liter building” during 3 heating periods. In Germany 80 % of all buildings are considered “old” from the point of view of their demand of energy. They have a considerable energy consumption and environmental impact. As object of study was taken a residential building in Ludwigshafen (Germany), which besides the usual renovation works, it was renewed paying special attention to its energy requirements. The goal of the project was to convert the building into a “3 liter building” (30 kWh/m2a). To achieve this objective the heat losses by transmission were reduced, the passive solar gains were increased and the heat losses by ventilation were decreased by installing a new ventilation system with heat recovery. In the building several variables were measured during three heating periods. The measurements showed a good correlation with the average energy requirements calculated for a big building. However some of the apartments had big deviations in respect to these average values. Now regarding the coming Energy Performance Certificate as energy requirements and energy demand certificate, the question about the influence of the behaviour of each users gains importance in buildings with few apartments. The data collected during this study show interesting results, which question the Energy Performance Certificate for buildings with few apartments.  相似文献   

16.
《Energy and Buildings》2005,37(5):429-442
Buildings have direct environmental impacts, ranging from the use of raw materials for their construction and renovation to the consumption of natural resources, like water and fossil fuels, and the emission of harmful substances. Data on heating energy consumption were collected during the audits of 193 European residential buildings in five countries. The available data were analysed in order to assess the influence of envelope thermal insulation, age and condition of heating system, on the heating energy consumption and the resulting environmental impact. About 38% of the audited buildings have an annual heating energy consumption more than the European average (174.3 kWh/m2), about 30% of the buildings have higher airborne emissions than the European averages and 23% of the buildings have higher solid waste emissions than the European averages. Polish buildings have the highest average heating energy consumption (63% of the buildings above the European average). French and Polish buildings have the highest production of airborne emissions, while Polish buildings have the highest emissions of solid wastes.  相似文献   

17.
The space heating demand of residential buildings can be decreased by improved insulation, reduced air leakage and by heat recovery from ventilation air. However, these measures result in an increased use of materials. As the energy for building operation decreases, the relative importance of the energy used in the production phase increases and influences optimization aimed at minimizing the life cycle energy use. The life cycle primary energy use of buildings also depends on the energy supply systems. In this work we analyse primary energy use and CO2 emission for the production and operation of conventional and low-energy residential buildings. Different types of energy supply systems are included in the analysis. We show that for a conventional and a low-energy building the primary energy use for production can be up to 45% and 60%, respectively, of the total, depending on the energy supply system, and with larger variations for conventional buildings. The primary energy used and the CO2 emission resulting from production are lower for wood-framed constructions than for concrete-framed constructions. The primary energy use and the CO2 emission depend strongly on the energy supply, for both conventional and low-energy buildings. For example, a single-family house from the 1970s heated with biomass-based district heating with cogeneration has 70% lower operational primary energy use than if heated with fuel-based electricity. The specific primary energy use with district heating was 40% lower than that of an electrically heated passive row house.  相似文献   

18.
《Energy and Buildings》2006,38(3):196-206
This paper discusses the future development of efficient energy policies with respect to building sector, using a new simulation computer model called INVERT. The building sector incorporates supply side systems (heating, domestic hot water (DHW) and cooling systems) and Demand Side Management (DSM) measures. Simulation runs have been carried out up to 2020 for the Greek island of Crete based on sensitivity analyses for different building types, heating/cooling technologies and DHW systems. Promotion schemes for renewable energy sources (RES) and rational use of energy (RUE) are also implemented in the simulation model, since they have a strong impact on long-term financial investment strategies. Transfer costs and CO2 emissions of various hypothesis scenarios about new or additional promotion schemes for energy conservation in residential buildings have been compared with a reference scenario for the island of Crete. The outcome of this case study is presented and discussed in this paper.  相似文献   

19.
ABSTRACT

Many studies have investigated the impact of global warming on energy consumption. In this study, the morphing method and EnergyPlus (E+) software were used to investigate the impact of climate change on commercial building energy use under the A2 medium-CO2. emission scenario. The study simulated electricity and gas consumption of nine types of commercial buildings in eight cities, representing three climate zones in Florida. The nine types of commercial buildings included apartments, hotels, offices, and schools. The energy simulation results showed the future trends of growth and reduction in electricity and gas consumption for cooling and heating in TMY2 (TMY3), 2020, 2050, and 2080 in the eight selected cities. In general, gas and electricity demands for heating are projected to decrease, and electricity demand for cooling increases, at different rates in various areas of Florida. The study provides guidance for policy‐makers and utility companies as they craft their response to climate change in various regions of Florida.  相似文献   

20.
The city of Denizli is in the 3rd climatic region in Turkey and there is a heating requirement for a period of approximately five months. During this period, thermal insulation of buildings is very important in minimizing the energy usage and reducing emission. In this study, environmental impact of optimum insulation thickness in external walls has been investigated for the case of Denizli, Turkey. In the calculations, coal was used as the fuel source and the expanded polystyrene as the insulation material. The results proved that when the optimum insulation thickness was used, energy consumption was decreased by 46.6% and the emissions of CO2 and SO2 were reduced by 41.53%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号