首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The scattering characteristics of microwaves(MWs) by an underdense inhomogeneous plasma column have been investigated.The plasma column is generated by hollow cathode discharge(HCD) in a glass tube filled with low pressure argon.The plasma density in the column can be varied by adjusting the discharge current.The scattering power of X-band MWs by the column is measured at different discharge currents and receiving angles.The results show that the column can affect the properties of scattering wave significantly regardless of its plasma frequency much lower than the incident wave frequency.The power peak of the scattering wave shifts away from 0°to about ±15odirection.The finite-different time-domain(FDTD) method is employed to analyze the wave scattering by plasma column with different electron density distributions.The reflected MW power from a metal plate located behind the column is also measured to investigate the scattering effect on reducing MW reflectivity of a metal target.This study is expected to deepen the understanding of plasma-electromagnetic wave interaction and expand the applications concerning plasma antenna and plasma stealth.  相似文献   

2.
Some reports presented that the radar cross section(RCS) from the radar antenna of military airplanes can be reduced by using a low-temperature plasma screen. This paper gives a numerical and experimental analysis of this RCS-reduction method. The shape of the plasma screen was designed as a semi-ellipsoid in order to make full use of the space in the radar dome.In simulations, we discussed the scattering of the electromagnetic(EM) wave by a perfect electric conductor(PEC) covered with this plasma screen using the finite-difference-time-domain(FDTD)method. The variations of their return loss as a function of wave frequency, plasma density profile, and collision frequency were presented. In the experiments, a semi-ellipsoidal shaped plasma screen was produced. Electromagnetic attenuation of 1.5 GHz EM wave was measured for a radio frequency(RF) power of 5 k W at an argon pressure of 200-1150 Pa. A good agreement is found between simulated and experimental results. It can be confirmed that the plasma screen is useful in applications for stealth of radar antenna.  相似文献   

3.
A novel plasma limiter, in which the plasma is excited by surface wave, is presented. The breakdown time of some gases filled in the limiter were calculated as a function of gas pres- sure, ionization degree and density of seed electrons under low pressure (0.01 -1 Torr) and high pressure (10 -1000 Torr) cases. The results show that the limiter filled with Xe with a pressure of 0.9 Torr, seed electron density of 10^16 m^-3, and ionization degree of 10^-4, has a breakdown time of approximate 19.6 ns.  相似文献   

4.
An atmospheric pressure microwave plasma source (APMPS) that can generate a large volume of plasma at an atmospheric pressure has been developed at Tsinghua University. This paper presents the design of this APMPS, the theoretical consideration of microwave plasma ignition and the simulation results, including the distributions of the electric field and power density inside the cavity as well as the accuracy of the simulation results. In addition, a method of producing an atmospheric pressure microwave plasma and some relevant observations of the plasma are also provided. It is expected that this research would be useful for further developing atmospheric pressure microwave plasma sources and expanding the scope of their applications.  相似文献   

5.
The randomness of turbulent reentry plasma sheaths can affect the propagation and scattering properties of electromagnetic waves.This paper developed algorithms to estimate the influences.With the algorithms and typical reentry data,influences of GPS frequency and Ka frequency are studied respectively.Results show that,in terms of wave scattering,the scattering loss caused by the randomness of the turbulent plasma sheath increases with the increase of the ensemble average electron density,ensemble average collision frequency,electron density fluctuation and turbulence integral scale respectively.Also the scattering loss is much smaller than the dielectric loss.The scattering loss of Ka frequency is much less than that of the GPS frequency.In terms of wave propagation,the randomness arouses the fluctuations of amplitude and phase of waves.The fluctuations change with altitudes that when the altitude is below 30 km,fluctuations increase with altitude increasing,and when the altitude is above 30 km,fluctuations decrease with altitude increasing.The fluctuations of GPS frequency are strong enough to affect the tracking,telemetry,and command at appropriate conditions,while the fluctuations of Ka frequency are much more feeble.This suggests that the Ka frequency suffers less influences of the randomness of a turbulent plasma sheath.  相似文献   

6.
This paper focuses on the application of plasma as wireless antenna. In order to reveal the radiation characteristics of column plasma antenna, we chose the finite-difference time- domain (FDTD) numerical analysis method to simulate radiation impedance and efficiencies of each channel for a few sets of plasma densities and plasma collision frequencies. Simulation results demonstrate that a plasma antenna shares similar characteristics with a metallic antenna in radiation impedance and efficiency of each channel when an appropriate setting is adopted. Unlike a metallic antenna, a plasma antenna is capable of realizing such functions as dynamic reconfiguration, digital control and dual-channel communication. Thus it is possible to carry out dual-channel communication by plasma antenna, indicating a new path for modern intelligent communication.  相似文献   

7.
This paper reports on an experiment designed to test electromagnetic(EM)attenuation by radio-frequency(RF)plasma for cavity structures.A plasma reactor,in the shape of a hollow cylinder,filled with argon gas at low pressure,driven by a RF power source,was produced by wave-transmitting material.The detailed attenuations of EM waves were investigated under different conditions:the incident frequency is 1-4 GHz,the RF power supply is 13.56 MHz and1.6~(-3) k W,and the argon pressure is 75-200 Pa.The experimental results indicate that 5-15 d B return loss can be obtained.From a first estimation,the electron density in the experiment is approximately(1.5-2.2)×1016m~(-3)and the collision frequency is about 11~(-3)0 GHz.The return loss of EM waves was calculated using a finite-difference time-domain(FDTD)method and it was found that it has a similar development with measurement.It can be confirmed that RF plasma is useful in the stealth of cavity structures such as jet-engine inlet.  相似文献   

8.
An equation is derived of the electron distribution evolution during the scattering of Langmuir waves by the plasma electrons. Calculation is performed with refraining from traditional substitution of a real plasma by a plasma probabilistic ensemble. The picture of the electron distribution evolution is compared with one suggested by Tsytovich (Refs. 12 and 19). The Tsytovich's idea of the respective electron kinetics is shown to underestimate substantially the intensity of the phenomenon and thus to evidence once more for the scientific inconsistency of the nonequilibrium statistical mechanics.Other former calculations of the particle kinetic equations are also discussed.  相似文献   

9.
The generation of plasma which can absorb microwaves is currently a research topic of interest. This kind of plasma is often produced by the discharge or electron-beam impact of noble gases. In this paper an alternatice approach, combustion plasma, is studied. The plasma is produced by combusting solid grains prepared specially. Six groups of powders were made and used to generate the plasma. The transmissivity of the wave in plasma was measured by employing a microwave scalar network analyser system. In addition, the electron density and the collision frequency of the plasma were examined by microwave double-frequency diagnosis. The measurement results showed that the plasma could absorb microwaves remarkably with an average transmission attenuation being more than 18 dB in a frequency range of 2 GHz to 15 GHz. The diagnosis indicated that the electron density of the plasma varied from 10^17 m^-3 to 10^19 m^-3 and the collision frequency was about 5 × 10^10 s^-1.  相似文献   

10.
Plasma filling can dramatically improve the performance of high power microwave devices.The characteristics of high-power microwave propagation along plasma filled waveguides in an axial magnetic field are analyzed in this paper,and the ponderomotive force effect of high power microwave is taken into consideration.Theoretical analysis and preliminary numerical calculations are performed.The analyses show that the ponderomotive effect would change the plasma density,distribution of microwave field intensity,and dispersion of wave propagation.The higher the microwave power,the stronger the ponderomotive effect.In different magnetic fields,the ponderomotive effect is different.  相似文献   

11.
Boron-doped nanocrystalline diamond(NCD) exhibits extraordinary mechanical properties and chemical stability,making it highly suitable for biomedical applications.For implant materials,the impact of boron-doped NCD films on the character of cell growth(i.e.,adhesion,proliferation) is very important.Boron-doped NCD films with resistivity of 10~(-2)Ω·cm were grown on Si substrates by the microwave plasma chemical vapor deposition(MPCVD) process with H_2 bubbled B_2O_3.The crystal structure,diamond character,surface morphology,and surface roughness of the boron-doped NCD films were analyzed using different characterization methods,such as X-ray diffraction(XRD),Raman spectroscopy,scanning electron microscopy(SEM) and atomic force microscopy(AFM).The contact potential difference and possible boron distribution within the film were studied with a scanning kelvin force microscope(SKFM).The cytotoxicity of films was studied by in vitro tests,including fluorescence microscopy,SEM and MTT assay.Results indicated that the surface roughness value of NCD films was 56.6 nm and boron was probably accumulated at the boundaries between diamond agglomerates.MG-63 cells adhered well and exhibited a significant growth on the surface of films,suggesting that the boron-doped NCD films were non-toxic to cells.  相似文献   

12.
The velocity of critical surface at microwave band in laser-induced plasma was measured and the results are presented. The results indicate that the velocity of critical surface with low electron density is larger than that with the high one; and the velocity of critical surface increases with the laser power density.  相似文献   

13.
Aligned carbon nanotubes (CNTs) were synthesized on glass by microwave plasma chemical vapor deposition (MWPCVD) with a mixture of methane and hydrogen gases at the low temperature of 550~C. The experimental results show that both the self-bias potential and the density of the catalyst particles are responsible for the alignment of CNTs. When the catalyst particle density is high enough, strong interactions among the CNTs can inhibit CNTs from growing randomly and result in parallel alignment.  相似文献   

14.
Diamond films with very smooth surface and good optical quality have been deposited onto silicon substrate using microwave plasma chemical vapor deposition(MPCVD)from a gas mixture of ethanol and hydrogen at a low substrate temperature of 450℃.The effects of the substrate temperature on the diamond nucleation and the morphology of the diamond film have been investigated and observed with scanning electron microscopy(SEM).The microstructure and the phase of the film have been characterized using Raman spectroscopy and X-ray diffraction(XRD).The diamond nucleation density significantly decreases with the increasing of the substrate temperature.There are only sparse nuclei when the substrate temperature is higher than 800℃ although the ethanol concentration in hydrogen is very high.That the characteristic diamond peak in the Raman spectrum of a diamond film prepared at a low substrate temperature of 450℃ extends into broadban indicates that the film is of nanophase.No graphite peak appeared in the XRD pattern confirms that the film is mainly composed of SP^3 carbon.The diamond peak in the XRD pattern also broadens due to the nanocrystalline of the film.  相似文献   

15.
In a quasi-two-dimensional model, the scattering of incident ordinary electromag- netic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (kia〈〈1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approximation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then kia 〈〈 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering crosssection. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.  相似文献   

16.
A novel method is introduced for preparing iron nanoparticles from iron pentacarbonyl using an atmospheric microwave plasma. The prepared iron nanoparticles were characterized by transmission electron microscopy and X-ray diffraction. The results show that the size of the particles can be controlled by adjusting the microwave power and the flow rate of the carrier gas.The magnetic properties of the synthesized iron particles were studied and a saturation magnetization of ~95 emu/g was obtained. The convenient preparation process and considerable production rate were also found to be satisfactory for industrial applications.  相似文献   

17.
Large size of air plasma at near atmospheric pressure has specific effects in aerospace applications. In this paper, a two dimensional multi-fluid model coupled with Monte Carlo (MC) model is established, and some experiments were carried out to investigate the characteristics of electron beam air plasma at pressure of 100-170 Torr. Based on the model, the properties of electron beam air plasma are acquired. The electron density is of the order of 1016 m-3 and the longitudinal size can exceed 1.2 m. The profiles of charged particles demonstrate that the oxygen molecule is very important for air plasma and its elementary processes play a key role in plasma equilibrium processes. The potential is almost negative and a very low potential belt is observed at the edge of plasma acting as a protection shell. A series of experiments were carried out in a low pressure vacuum facility and the beam plasma densities were diagnosed. The experimental results demonstrate that electron density increased with the electron beam energy, and the relatively low pressure was favorable for gaining high density plasma. Hence in order to achieve high density and large size plasma, it requires the researchers to choose proper discharge parameters.  相似文献   

18.
New calculations of the kinetics of Langmuir wave scattering induced by plasma electrons are performed, with refraining from traditional substitution of real plasma by plasma probabilistic ensemble. The equations developed are compared with those suggested by Tsytovich in the Theory of Turbulent Plasma (Consultants Bureau, New York, 1977) and also in Uspehi Fiz. Nauk 90 (3), 435 (1966) (Sov. Phis. Uspekhi 9, 805 (1967)). It is shown that Tsytovich's calculations do not account properly for the Compton wave scattering on plasma electrons.  相似文献   

19.
We investigate the Terahertz(THz) plasma waves in a two-dimensional(2D) electron gas in a nanometer field effect transistor(FET) with quantum effects, the electron scattering,the thermal motion of electrons and electron exchange-correlation. We find that, while the electron scattering, the wave number along y direction and the electron exchange-correlation suppress the radiation power, but the thermal motion of electrons and the quantum effects can amplify the radiation power. The radiation frequency decreases with electron exchange-correlation contributions, but increases with quantum effects, the wave number along y direction and thermal motion of electrons. It is worth mentioning that the electron scattering has scarce influence on the radiation frequency. These properties could be of great help to the realization of practical THz plasma oscillations in nanometer FET.  相似文献   

20.
In order to deposit good films, we need to study the uniformity of plasma density and the plasma density under different gas pressures and powers. The plasma density was diagnosed by a Langmuir probe. The optical emission spectroscopy (OES) of CH4 and H2 discharge was obtained with raster spectroscopy, with characteristic peaks of H and CH achieved. Diamond-like carbon films were achieved based on the study of plasma density and OES and characterized by atomic force microscope (AFM), X-ray diffraction instrument (XRD), Raman spectroscope and profiler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号