首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对视频中运动目标的准确跟踪问题,提出了一种改进的颜色直方图特征和SURF特征的粒子滤波跟踪算法。采用SURF算法提取特征点,利用分层迭代的KLT算法对特征点进行稳定跟踪。将SURF特征与改进的视觉显著性颜色特征进行乘性融合,作为粒子滤波的观测概率。针对跟踪过程中SURF匹配数下降和不稳定的现象,设计了SURF特征模板集的更新策略。与传统特征的跟踪进行多组对比实验,其结果证明了该方法对光照和遮挡具有很好的鲁棒性,对目标跟踪的准确率更高。  相似文献   

2.
基于粒子滤波和Mean-shift的跟踪算法   总被引:1,自引:2,他引:1       下载免费PDF全文
蒋旻  许勤  尚涛  高伟义 《计算机工程》2010,36(5):21-22,2
粒子滤波作为一种基于贝叶斯估计的算法,在处理非线性运动目标跟踪问题上具有特殊的优势。基于此,提出一种基于粒子滤波和Mean-shift的混合跟踪算法(KMSEPF)。KMSEPF算法对一般的Mean-shift和粒子滤波混合算法进行改进。结果证明,KMSEPF算法与混合算法MSEPF相比,在计算效率提高的同时,跟踪准确性和处理遮挡的能力没有下降。  相似文献   

3.
提出了一种改进粒子滤波跟踪算法EMPF(expectation-maximization particle filter)。针对传统粒子滤波存在的动态模型的不确定问题,将EM算法与粒子滤波算法有效结合,将运动模型的参数作为待估量,采用EM算法来确定目标的运动模型参数,从而获得对目标状态的较准确估计。实验结果表明,当目标做复杂的转弯运动时,该算法能够显著地提高对目标运动状态的预测精度。  相似文献   

4.
基于目标跟踪的粒子群粒子滤波算法研究   总被引:3,自引:0,他引:3  
针对粒子滤波方法在重采样阶段容易造成样本有效性和多样性的损失,导致了样本贫化问题,提出了一种改进的粒子滤波算法.算法将粒子群优化思想引入粒子滤波中,在粒子采样过程前先利用粒子群算法进行优化.粒子群算法将最新观测值融合到粒子进化公式中,大部分粒子经过粒子群优化后,朝着后验概率分布比较密集的区域运动,聚集在最优粒子附近,使粒子的权值被提高,避免了在重新采样过程中被舍弃,进而缓解了样本被贫化问题.目标跟踪系统中的位置估计由于物体运动具有突然性,很难准确估计.采用非线性目标跟踪模型和分时恒定值模型分别研究改进粒子滤波算法对误差均方值的影响.仿真结果表明改进算法与常规粒子滤波算法和扩展卡曼滤波算法相比,更加有效地降低变量的误差均方值,从而提高了滤波性能.  相似文献   

5.
蒋旻  许勤  尚涛  高伟义 《计算机工程》2010,36(5):21-22,25
粒子滤波作为一种基于贝叶斯估计的算法,在处理非线性运动目标跟踪问题上具有特殊的优势。基于此,提出一种基于粒子滤波和Mean-shift的混合跟踪算法(KMSEPF)。KMSEPF算法对一般的Mean-shift和粒子滤波混合算法进行改进。结果证明,KMSEPF算法与混合算法MSEPF相比,在计算效率提高的同时,跟踪准确性和处理遮挡的能力没有下降。  相似文献   

6.
提出了一种改进的粒子滤波算法,在遮挡情况下,能鲁棒地跟踪运动目标.该方法是把改进的颜色直方图结合到粒子滤波的观测模型中,并提出了一种判断目标遮挡的分块检测遮挡的方法.首先对传统的以核函数赋权值的方法进行改进,把目标中心附近的像素都赋予最大的权值,目标的边缘由于遮挡等原因采用指数分布赋权值;在遮挡检测时,提出了把跟踪窗分为左右两个子部分,分别计算相似性度量的方法,提高了遮挡检测的实时性和准确性;同时,该算法对旋转和尺寸的变化具有鲁棒性.实验结果表明,与基本的粒子滤波算法相比,提出的新算法能更好的处理目标跟踪中的遮挡问题.  相似文献   

7.
在粒子滤波的基础上融合扩展卡尔曼滤波算法,融合后的算法在计算提议概率密度分布时,充分考虑当前时刻的量测,使粒子的分布更加接近状态的后验概率分布.将此改进粒子滤波算法在"当前"统计模型框架下进行机动目标自适应跟踪.仿真实验验证了该种方法对机动目标的良好自适应跟踪性能.  相似文献   

8.
针对移动目标跟踪的非线性、非高斯的特点,本文系统介绍了基于ARMll的嵌入式设备进行移动目标跟踪的应用实现.核心应用算法使用改进的粒子滤波算法,其中粒子滤波算法的改进采用对粒子加权以及重新采样,以克服样本贫化现象和区分粒子的重要性程度.然后闸述了将粒子滤波算法移植到嵌入式设备以实现移动目标跟踪的应用需要.  相似文献   

9.
基于改进的粒子滤波算法的目标跟踪   总被引:1,自引:0,他引:1  
闫嘉琪  李蕊  沈晓斌 《测控技术》2014,33(11):53-56
将均值漂移算法与粒子滤波有效结合,通过比较粒子的权重,对粒子进行重采样,剔除大量的权重小的粒子,再加入均值漂移算法对粒子进行聚类,使用很少的粒子就能完全描述目标的状态信息,克服了粒子滤波计算量大的缺点,在实时监控中大大提高了跟踪效率。实验证明,该算法具有较好的实时性、鲁棒性和准确性。  相似文献   

10.
粒子滤波是一种基于蒙特卡罗和递推贝叶斯估计的滤波方法,在处理非高斯非线性系统的状态和参数估计方面有独到的优势。但是其庞大的计算量和缓慢的速度限制了其在实时系统中的应用。本文中介绍了粒子滤波基本原理,通过改进权重计算、重采样算法,计算速度得到提高。这种改进的算法在DSP系统中进行目标跟踪仿真,证明其具有速度快、精度高的特点。  相似文献   

11.
基于均值漂移算法和粒子滤波算法的目标跟踪   总被引:4,自引:0,他引:4  
将均值漂移算法和粒子滤波算法分别做出改进后进行有效结合.在非遮挡和不严重遮挡情况下,采用改进的均值漂移算法,在严重遮挡情况下,采用改进的粒子滤波算法,并在遮挡结束后验证正确的跟踪是否得到恢复.提出有效的分块检测遮挡算法,遮挡期间颜色模板不更新.实验结果表明该算法具有较好的实时性和鲁棒性,能有效实现复杂场景下的目标跟踪.  相似文献   

12.
为了解决粒子滤波(PF)的无线传感器目标跟踪中样本贫化导致的精度较低的问题,提出了改进布谷鸟粒子滤波的WSN目标跟踪方法。通过改进布谷鸟算法的滤波算法取代粒子滤波重采样过程,主要通过改进布谷鸟算法中的搜索步长值 和发现外来鸟卵的物种的概率 的自适应调节,同时在步长更新方程中实时引入函数值的变化趋势,引导粒子整体上向较高的随机区域移动, 有效调整全局探索和局部探索适应能力、改善粒子贫化和局部极值问题,增加粒子群多样化从而提高跟踪性能。实验结果表明,改进布谷鸟粒子滤波算法重采样方法可以防止粒子的退化,增加粒子的多样性,减少跟踪误差,可以减少算法的运行时间,实时追踪性能大幅提高。与CS-PF算法和PF算法相比较,ICS-PF 算法的计算时间是最短的,ICS-PF算法的位置和速度的平均平方根误差最小(位置0.0306、0.0213、速度0.0253、0.0102),PF算法的跟踪精度是最低的,而ICS-PF跟踪精度较高,ICS-PF算法被证明具有良好的跟踪性能。  相似文献   

13.
针对低信噪比环境下微弱目标的实时检测与跟踪,提出一种基于粒子滤波的检测前跟踪改进算法.该算法在粒子滤波的基础上融合不敏卡尔曼滤波(uKF1)算法,融合后的新算法在利用重要性密度函数产生粒子时充分考虑当前时刻的量测,从而引导粒子向高似然区域移动,使得粒子的分布更接近状态的后验概率分布.仿真实验表明,改进算法的检测与跟踪性能优于标准的粒子滤波算法.  相似文献   

14.
本文针对单目标多径跟踪问题提出了一种基于粒子滤波的多径伯努利跟踪算法.该算法首先利用多径伯努利滤波算法解决了超视距雷达系统中的多径传播问题,然后结合粒子滤波实现方式解决了系统模型非线性问题.仿真实验表明该算法比传统的高斯混合多径伯努利滤波具有更高的跟踪精度.  相似文献   

15.
字典学习广泛应用于图像去噪、图像分类等领域,但是将离线字典训练如何应用于视频目标跟踪的研究较少。本文采用一种字典编码方法提取目标的局部区域描述符,通过训练分类器将跟踪问题转化为背景和前景二值分类问题,并通过粒子滤波对物体位置进行估计实现跟踪。不同图像序列的实验结果表明,与现有的方法相比本文的算法具有较好的鲁棒性。  相似文献   

16.
在目标跟踪领域,粒子滤波技术有处理非线性非高斯问题的优势,但是标准粒子滤波在利用重采样方法解决退化现象时,会产生粒子贫化问题,导致滤波精度不稳定.针对这种问题,本文算法采用了差分进化蝙蝠算法对粒子滤波进行改进.本文算法将粒子表征为蝙蝠个体,蝙蝠种群通过调节频率、响度、脉冲发射率,伴随当前最优蝙蝠个体在目标图像区域进行搜索,并且可以动态决策是采用全局搜索还是进行局部搜索,从而提高粒子整体的质量和合理的分布;引进的差分进化策略可以增强蝙蝠个体跳出局部最优的能力.为了验证本文算法的优化性能,将本文算法和标准粒子滤波算法进行性能分析对比.实验结果表明本文算法滤波性能优于标准粒子滤波算法.  相似文献   

17.
分析了无线移动传感器网络中目标的跟踪原理,研究了基本粒子滤波算法的主要技术。对基本粒子滤波的重要性函数和重采样技术进行改进后,给出了一种提高基本粒子滤波算法跟踪精度的方法。通过仿真比较可以看出改进粒子滤波算法有较好的跟踪精度。在无线移动传感器网络中强调跟踪精度的场合,改进的粒子滤波算法会有更好的跟踪效果。  相似文献   

18.
随着人工智能技术的发展以及数字图像处理技术的应用日渐普及,目标跟踪成为国内外学者的研究热点,该文针对无人机目标跟踪易受遮挡、形变、等复杂背景的干扰导致跟踪失败等问题提出一种基于自适应的粒子滤波的无人机目标跟踪算法。实验结果表明,该算法能有效地减少因复杂因素干扰导致的目标跟踪精度下降的问题,具有良好的鲁棒性。  相似文献   

19.
针对标准粒子滤波算法存在的缺陷,本文引入了两种改进的方法,引入最新的量测信息,改进粒子滤波的建议分布。EKPF通过引入扩展卡尔曼算法改进粒子分布,UPF引入无味变换改进粒子的分布,并对其进行了仿真对比分析。实验结果表明,UPF算法优于扩展卡尔曼粒子滤波算法与标准粒子滤波算法。  相似文献   

20.
针对低信噪比时标准粒子滤波对弱小目标的检测与跟踪时存在的粒子贫乏、跟踪精度对粒子数目要求高等问题,提出一种基于高斯粒子群优化粒子滤波的弱小目标检测前跟踪算法。利用高斯粒子群优化算法优化重采样后的粒子集,使粒子集朝着后验概率密度分布取值较大的区域运动,增加粒子的多样性,克服了粒子贫乏问题,并在保证跟踪精度的前提下降低了跟踪所需要的粒子数目,提高了标准粒子滤波算法的检测和跟踪性能。同时,建立了检测前跟踪系统的观测模型和系统模型,对基于标准粒子滤波检测前跟踪算法和优化算法进行仿真,仿真实验结果表明高斯粒子群优化粒子滤波的检测前跟踪算法相比基于标准粒子滤波的检测前跟踪算法具有更好的检测与跟踪性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号