首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work reports the experimental results on the characteristics of radio frequency dielectric barrier N2 /Ar discharges.Depending on the nitrogen content in the feed gas and the input power,the discharge can operate in two diferent modes: a homogeneous glow discharge and a constricted discharge.With increasing input power,the number of discharge columns increases.The discharge columns have starlike structures and exhibit symmetric self-organized arrangement.Optical emission spectroscopy was performed to estimate the plasma temperature.Spatially resolved gas temperature measurements,determined from NO emission rotational spectroscopy were taken across the 4.4 mm gap filled by the discharge.Gas temperature in the middle of the gas gap is lower than that close to the electrodes.  相似文献   

2.
The study on homogeneous DBDs at atmospheric pressure has attracted much attention for their advantages in applications.Tremendous work has been conducted both experimentally and numerically at a constant applied voltage or driving frequency.However the investigation of dielectric barrier discharges is still scarce for a constant power or power density.In this work,a new computational approach for DBDs is developed to explore atmospheric DBDs at a constant power based on a one-dimensional fluid model.The frequency and gap spacing effects on the atmospheric plasmas are systematically analyzed based on computational data.The computational results show that at a constant power both the current density and the amplitude of the applied voltage decrease,whereas the current pulse width increases,with increasing frequency.The simulation also indicates that as the gap spacing is raised with a fixed power and frequency,the current density and electron density increase initially,then reach their peak values,and then decrease,which means that there are maximum values for both of them.These results are significant for many industrial applications,as they can be used to optimize plasma devices of DBDs with the consideration of power consumption.  相似文献   

3.
The homogeneous dielectric barrier discharge (DBD) in atmospheric air between two symmetric-columnar copper electrodes with epoxy plates as the dielectric barri...  相似文献   

4.
This paper presents the fabrication and a spectroscopic study of a stable radiofrequency dielectric barrier discharge(RF DBD) in Ar with a novel dielectric,anodic alumina,at atmospheric pressure.Dielectric electrodes are fabricated from commercially available low cost impure aluminum strips by a two-step anodization process in 0.3 M solution of oxalic acid.The discharge is found to be stable with excellent spatial uniformity for the RF input power range of 30~80 W.Excitation and rotational temperatures measured in the experiment range of 1472~3255 K and 434~484 K,respectively,as the input power changes from 30 W to 80 W.These temperature ranges are suitable for surface modification applications.  相似文献   

5.
The dielectric barrier discharge (DBD) and pulse corona discharge(POD) plasmagenerator was used to remove NHa, H2S, C7H8 etc. from atmosphere. The principle and charac-teristic of the two ways was discussed in the article. The test shows the result of PCD is betterthan that of DBD.  相似文献   

6.
Aniline is a toxic water pollutant detected in drinking water and surface water,and this chemical is harmful to both human and aquatic life.A dielectric barrier discharge(DBD)reactor was designed in this study to investigate the treatment of aniline in aqueous solution.Discharge characteristics were assessed by measuring voltage and current waveforms,capturing light emission images,and obtaining optical emission spectra.The effects of several parameters were analyzed,including treatment distance,discharge power,DBD treatment time,initial pH of aniline solutions,and addition of sodium carbonate and hydrogen peroxide to the treatment.Aniline degradation increased with increasing discharge power.Under the same conditions,higher degradation was obtained at a treatment distance of 0 mm than at other treatment distances.At a discharge power of 21.5 W,84.32%of aniline was removed after 10 min of DBD treatment.Initial pH significantly influenced aniline degradation.Adding a certain dosage of sodium carbonate and hydrogen peroxide to the wastewater can accelerate the degradation rate of aniline.Possible degradation pathways of aniline by DBD plasmas were proposed based on the analytical data of GC/MS and TOC.  相似文献   

7.
A pseudoglow discharge behaviour is achieved at a 2.0-mm dielectric-dielectric electrode gap in pure helium under atmospheric pressure. An experimental study of the pseudoglow discharges is presented. The electrical characteristics and the discharge photos of the pseudoglow discharges are analyzed and discussed. The current-voltage parameters of the pseudoglow dis- charges are considered in regard to the influence on their behaviour.  相似文献   

8.
The discharge operation regime of pulse modulated atmospheric radio frequency(RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses.The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(α)-gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 k Hz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge.  相似文献   

9.
A homogeneous atmospheric pressure dielectric barrier discharge is studied. It is in argon with small admixtures of titanium tetrachloride vapour and oxygen for the deposition of thin titania films on glass substrates. A special electrode configuration was applied in order to deposit the titania film uniformly. The sustaining voltage (6 kV to 12 kV), current density (about 3 mA/cm^2) and total optical emission spectroscopy were monitored to characterize the discharge in the gap of 2 mm. Typical deposition rates ranged from approximately 30 nm/min to 120 nm/min. The film morphology was investigated by using scanning electron microscopy (SEM) and the composition was determined with an energy dispersive x-ray spectroscopy (EDS) analysis tool attached to the SEM. The crystal structure and phase composition of the films were studied by x-ray diffraction (XRD). Several parameters such as the discharge power, the ratio of carrier gas to the precursor gas, the deposition time on the crystallization behavior, the deposition rate and the surface morphology of the titania film were extensively studied.  相似文献   

10.
In this paper, the dielectric barrier discharge fingerprint acquisition technique is introduced. The filament discharge phenomena were observed in the process of fingerprint acquisition. The filament discharge reduced the quality of fingerprint images. Obviously, it was necessary to eliminate streamer discharges in order to get good fingerprint images. The streamer discharge was considered to be the cause of the filament discharge in the experiment. The relationship between the critical electric field and the discharge gap was calculated with the Raether's model of streamer discharge. The calculated results and our experiment proved that it would be difficult for the streamer discharge to occur when the discharge gap was narrow. With a narrow discharge gap, the discharge was homogeneous, and the fingerprint images were clear and large in area. The images obtained in the experiment are very suitable for fingerprint identification as they contain more information.  相似文献   

11.
In this work the effects of O_2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions.The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He_2~+ and O_2~-, respectively, the densities of the reactive oxygen species(ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O_2 concentration results in increasingly weak discharge and the time lag of the ignition. For O_2 concentrations below 1.1%,the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O_2 concentration and then the increase becomes weak. In particular,the total density of the reactive oxygen species reaches its maximums at the O_2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O_2 concentration of 0.5% is an optimal O_2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture.  相似文献   

12.
To clean the exhaust emissions as one of the most important tasks in pollution control, a study on the treatment of engine emissions with discharge assistance was reported. A DBD plasma source shaped in grid and cylinder was examined in different engine operational modes to reduce the NOX content of diesel engine exhaust. The composition of the exhaust gases and chemical reactions initiated by the discharge were analyzed. The discharge frequency had a crucial impact on the device’s performance and gas treatment. The voltages applied to the discharge gap could alter the chemical reactions occurring in the treated gases, which were indicated by the NO to NO2 ratio. The operation of the system was studied at frequencies ranging from 400 Hz to 16 kHz.  相似文献   

13.
《等离子体科学和技术》2016,18(11):1081-1088
Atmospheric-pressure argon plasmas have received increasing attention due to their high potential in many industrial and biomedical applications. In this paper, a 1-D fluid model is used for studying the particle density characteristics of the argon plasmas generated by the pulsed dielectric barrier discharges. The temporal evolutions of the axial particle density distributions are illustrated, and the influences of changing the main discharge conditions on the averaged particle densities are researched by independently varying the various discharge conditions. The calculation results show that the electron density and the ion density reach two peaks near the momentary cathodes during the rising and the falling edges of the pulsed voltage. Compared with the charged particle densities, the densities of the resonance state atom Ar~r and the metastable state atom Ar~mhave more uniform axial distributions, reach higher maximums and decay more slowly. During the platform of the pulsed voltage and the time interval between the pulses, the densities of the excited state atom Ar*are far lower than those of the Ar~r or the Ar~m. The averaged particle densities of the different considered particles increase with the increases of the amplitude and the frequency of the pulsed voltage. Narrowing the discharge gap and increasing the relative dielectric constant of the dielectric also contribute to the increase of the averaged particle densities. The effects of reducing the discharge gap distance on the neutral particle densities are more significant than the influences on the charged particle densities.  相似文献   

14.
In this paper,a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted.In the present technological approach,the employment of air poses a significant challenge.The high oxygen concentration in air results in a reduced concentration of reactive species in combination with a short species lifetime.The plasma jet assembly presented here contains a special dielectric barrier with a high secondary emission coefficient.In this way,the electron density and in turn the density of reactive species is increased.In addition,the plasma jet assembly is equipped with a short electrode.This leads to a higher voltage across the discharge gap and in turn to an increased density of reactive plasma species.The plasma jet is formed within and emitted by a small conical nozzle.A high-speed gas flow with gas velocity of 340 m/s was achieved at the end of the nozzle.In the jet the concentration of toxic and unwanted neutral plasma species like O_3 or NO_x is significantly reduced because of the shorter residence time within the plasma.The range of short-lived active plasma species is in turn considerably enhanced.The jet efficiency and action range measured through the oxidation of a test surface were determined by measuring the increase of surface tension of a polypropylene substrate via contact angle measurements after plasma treatment.Numerical modeling of the plasma plume indicates that oxygen atoms are in fact the main active species in the plasma plume.  相似文献   

15.
As a spatially extended dissipated system, atmospheric-pressure dielectric barrier discharges (DBDs) could in principle possess complex nonlinear behaviors. In order to improve the stability and uniformity of atmospheric-pressure dielectric barrier discharges, studies on tem- poral behaviors and radial structure of discharges with strong nonlinear behaviors under different controlling parameters are much desirable. In this paper, a two-dimensional fluid model is devel- oped to simulate the radial discharge structure of period-doubling bifurcation, chaos, and inverse period-doubling bifurcation in an atmospheric-pressure DBD. The results show that the period-2n (n = 1, 2... ) and chaotic discharges exhibit nonuniform discharge structure. In period-2n or chaos, not only the shape of current pulses doesn't remains exactly the same from one cycle to an- other, but also the radial structures, such as discharge spatial evolution process and the strongest breakdown region, are different in each neighboring discharge event. Current-voltage characteris- tics of the discharge system are studied for further understanding of the radial structure.  相似文献   

16.
Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment, The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CHa and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly.  相似文献   

17.
In this work, the surface modification of poly (1, 4-phenylene-cis-benzobisoxazole) (PBO) fibers by O 2 /Ar coaxial atmospheric dielectric barrier discharge was investigated, as well as the interfacial adhesion properties of modified PBO fibers/epoxy composites. The results indicated that the contact angle decreased remarkably from 84.7 to 63.5 after 3 min O 2 /Ar plasma treatment. SEM and AFM images showed that the surface of the treated PBO fibers became rather rough. In addition, XPS results suggested that the polar functional group (O=C- O) was introduced on the surface of the treated PBO fiber. The interfacial adhesion test showed that the interfacial shear strength (IFSS) and the interlaminar shear strength (ILSS) increased significantly by 63.54% and 130%, respectively. Moreover, the excellent tensile property of the PBO fibres was well preserved  相似文献   

18.
The electronic excitation temperature of a surface dielectric barrier discharge (DBD) at atmospheric pressure has been experimentally investigated by optical emission spectroscopic measurements combined with numerical simulation. Experiments have been carried out to deter- mine the spatial distribution of electric field by using FEM software and the electronic excitation temperature in discharge by calculating ratio of two relative intensities of atomic spectral lines. In this work, we choose seven Ar atomic emission lines at 415.86 nm [(3s^23p^5)5p →(3s^23p^5)4s] and 706.7 nm, 714.7 nm, 738.4 nm, 751.5 nm, 794.8 nm and 800.6 nm [(3s^23p^5)4p → (3s^23p^5)4s] to estimate the excitation temperature under a Boltzmann approximation. The average electron energy is evaluated in each discharge by using line ratio of 337.1 nm (N2(C^3Пu →B3Пg)) to 391.4 nm (N2^+(B2 ∑u^+→ ∑g^+)). Furthermore, variations of the electronic excitation tempera- ture are presented versus dielectric thickness and dielectric materials. The discharge is stable and uniform along the axial direction, and the electronic excitation temperature at the edge of the copper electrode is the largest. The corresponding average electron energy is in the range of 1.6- 5.1 eV and the electric field is in 1.7-3.2 MV/m, when the distance from copper electrode varies from 0 cm to 6 cm. Moreover, the electronic excitation temperature with a higher permittivity leads to a higher dissipated electrical power.  相似文献   

19.
To understand the self sustained propagation of the plasma jet/bullet in air under atmospheric pressure, the ignition of the plasma jet/bullet, the plasma jet/bullet ignition point in the plasma pencil, the formation time and the formation criteria from a dielectric barrier configured plasma pencil were investigated in this study. The results were confirmed by comparing these results with the plasma jet ignition process in the plasma pencil without a dielectric barrier. Electrical, optical, and imaging techniques were used to study the formation of the plasma jet from the ignition of discharge in a double dielectric barrier configured plasma pencil. The investigation results show that the plasma jet forms at the outlet of the plasma pencil as a donut shaped discharge front because of the electric field line along the outlet’s surface. It is shown that the required time for the formation of the plasma jet changes with the input voltage of the discharge. The input power calculation for the gap discharge and for the whole system shows that 56% of the average input power is used by the first gap discharge. The estimated electron density inside the gap discharge is in the order of 1011cm-3 . If helium is used as a feeding gas, a minimum 1.48×10-8C charge is required per pulse in the gap discharge to generate a plasma jet.  相似文献   

20.
《等离子体科学和技术》2016,18(10):1005-1011
The surface dielectric barrier discharge(SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号