共查询到19条相似文献,搜索用时 82 毫秒
1.
基于RBF时间序列预测器的传感器故障诊断方法研究 总被引:1,自引:0,他引:1
研究了一种基于径向基函数(RBF)神经网络时间序列预测器诊断传感器故障的方法.以压力传感器的过载故障为模型,先用RBF神经网络建立时间序列预测模型,然后利用预测模型对传感器的输出作预测,再和传感器实际输出比较,从而判断传感器是否发生故障,并对发生故障的传感器进行数据重构.仿真实验证实了该方法可以有效地进行传感器故障诊断和数据重构,并可推广到其他传感器中. 相似文献
2.
针对瓦斯传感器故障诊断速度慢、诊断精度不高的问题,以常见的冲击型、漂移型、偏置型和周期型传感器输出故障为研究对象,提出了一种基于减聚类( SCM)与粒子群( PSO)算法优化的RBF神经网络进行模式分类与辨识的瓦斯传感器故障诊断方法。首先,利用三层小波包分解得到各个节点的分解系数,采用一定的削减算法使故障的瞬态信号特征得到加强,获取最优的特征能量谱。再利用SCM ̄PSO算法优化RBF神经网络,使粒子的搜索速度更快,更有利于发现全局最优解。最后通过实验对比分析,该方法具有训练速度快、分类精度高的特点,辨识正确率在95%以上,能够显著提高故障诊断的速度和准确性。 相似文献
3.
4.
5.
基于组合RBF网络的故障诊断方法及应用研究 总被引:4,自引:0,他引:4
王长琼 《计算机工程与应用》2001,37(14):13-14
针对一般的神经网络诊断方法不具备渐进学习能力、易发生漏诊或误诊的问题,研究了一种组合 RBF网络结构以及基于这种组合网络的故障诊断方法;诊断实例表明,该诊断方法能识别异常类故障,具有渐进学习能力。 相似文献
6.
对于系统状态检测与故障诊断,传感器自身故障的及早发现很重要。本文提出了一种基于神经网络和冗余率计算的传感器组故障监测与诊断的新方法。该方法先用RBF神经网络对传感器组中的各个输出进行预测,若预测值与输出值发生较大的偏差,可能是传感器故障或设备故障,运用传感器之间的冗余率,进一步判断传感器是否发生故障,进而采用对应的诊断策略。 相似文献
7.
基于信息融合技术的瓦斯传感器故障诊断研究 总被引:2,自引:1,他引:1
文章提出了将基于RBF网络的信息融合技术应用于瓦斯传感器故障诊断的思想。该思想的核心是通过对影响测点瓦斯浓度的各种相关信息融合,利用高精度RBF网络逼近器的输出与瓦斯传感器实际的输出之差与设定的阈值比较,实现瓦斯传感器故障的监测诊断。试验表明该技术能对瓦斯传感器进行有效的状态监测和故障诊断。 相似文献
8.
为了克服大量信息冗余和能量有限给无线传感器网络故障诊断带来的困难,提出一种将粗糙集与神经网络集成相结合的智能故障诊断方法(RS-ANNE)。该方法首先利用粗糙集理论的属性约简技术,提取诊断故障贡献最大的最小故障诊断特征集合,然后根据最小故障诊断特征确定神经网络的初始拓扑结构,建立故障特征与故障之间的映射关系,最后通过子网表决得到最终诊断结果。实验结果表明,RS-ANNE诊断方法诊断正确率为95.67%,与ANNE方法相比计算量减小22.98%,诊断正确率提高13.88%。 相似文献
9.
10.
提出了一种新颖的基于RBF神经网络滚动轴承故障诊断方法。以滚动轴承动态信号的能量信息作为特征,RBF神经网络作为分类器进行滚动轴承故障自动分类与诊断。为了进一步提高神经网络的泛化能力和故障诊断的准确性,采用Boosting方法,进行网络集成。对七类滚动轴承进行了实验,结果表明该方法具有很好的故障诊断效果。 相似文献
11.
12.
针对传感器在自动化系统中的重要性,指出了传感器故障诊断的必要性、可行性以及实现的基本方法。根据神经网络的原理与特点,阐述了基于RBF神经网络的传感器故障诊断的基本理论和优点,提出了一种基于RBF神经网络用于高分子湿度传感器进行故障诊断的方法。 相似文献
13.
非平稳工况下的齿轮故障检测是一项非常困难的工作,由于齿轮振动信号的复杂性,导致故障特征提取和故障诊断困难.针对这些问题,基于径向基(radial basis function, RBF)神经网络,提出一种在变速条件下齿轮的故障诊断方法 CIHDRFD.首先利用自适应白噪声的完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN),将原始振动信号分解为多个固有的模态函数(intrinsic mode function, IMF),并通过计算其信息熵(information entropy, IE)筛选出IE最小的4个IMF作为特征IMF;然后利用希尔伯特变换(hilbert transform, HT)处理特征IMF并求出Hilbert包络谱,利用Hilbert包络谱构建故障特征向量;最后利用改进的双RBF神经网络进行故障检测.通过搭建齿轮故障检测平台验证CIHDRFD方法的有效性,实验结果表明, CIHDRFD方法适用于齿轮故障诊断,在速度波动为3%的情况下,诊断准确率... 相似文献
14.
15.
为了提高模拟移动床控制系统PH传感器的可靠性,提出了一种基于两级RBF神经网络的故障诊断方法。该方法首先利用径向基(RBF)神经网络对传感器的输出序列建立预测模型,通过计算预测输出和实际输出的残差来检测故障的发生,然后对包含故障的残差信号利用小波变换进行特征提取,最后利用RBF诊断网络实现故障诊断。通过把这种方法应用到实际诊断测试中,可达到较准确的诊断结果。 相似文献
16.
17.
基于RBF的传感器在线故障诊断和信号恢复 总被引:4,自引:0,他引:4
介绍利用径向基神经网络构造了一种在线故障诊断及信号恢复方法,给出了网络的连接结构和学习算法。采用RBF神经网络进行传感器在线故障诊断和信号恢复,其仿真结果表明,该方法具有收敛速度快、信号恢复准确度高、泛化能力强的特点,且可以诊断多种复杂工作系统的传感器在线故障信号,同时进行信号的恢复。实现传感器状态监测、故障诊断、分离和信号恢复。 相似文献
18.
19.
在对称重设备数字化改造的过程中,有些研究人员提出了对某一特定传感器的故障诊断方法,但对于非指定传感器或者两个传感器同时发生故障的情况却没有检测方法.为此,本文提出了一种基于径向基神经网络预测的任意一个或两个称重传感器的故障检测方法.本文首先建立单个传感器的预测模型和任意两个传感器的预测模型,然后通过这两个预测模型计算出任意一个称重传感器的预测值和任意两个传感器的预测值,根据预测值与实际值之间的差值判断称重传感器故障个数、位置、类型等信息.实验表明,当称重传感器的输出误差大于0.3 t时使用此方法可以准确检测出称重传感器的故障信息. 相似文献