首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tribological properties of optimized SU-8 micro-dot patterns on Silicon (Si) were evaluated using a flat-on-flat tribometer. Sliding tests on the patterns were conducted against a SU-8 spin-coated 2 × 2 mm2 Si substrate at varying normal loads at a fixed rotational speed. It was observed that the pitch of the SU-8 pattern on Si substrate had significant influence on the wear durability. Ultra-thin layer of perfluoropolyether was over-coated onto SU-8 micro-dot patterned specimens for enhanced wear durability, and the specimen of the optimized pitch 450 μm has shown a wear life of more than 100,000 cycles at a normal load of 650 mN.  相似文献   

2.
The effects of two different textures (a 3D negative fingerprint texture and a honeycomb texture) on the tribological performance of SU-8 polymer surface have been investigated with a ball-on-disc tribometer. Friction and wear behaviors of the textured surfaces are conducted against a 4 mm diameter silicon nitride (Si3N4) ball counterface. The coefficient of friction for the negative fingerprint textured surface (μ=∼0.08) is much lower than that of the untextured surface (∼0.2) and the honeycomb textured surface (∼0.41) under a normal load of 100 mN and a rotational speed of 2 rpm. The coefficients of friction of the textured surfaces decrease with increasing normal loads between 100 mN and 300 mN. Above the normal load of 300 mN, the coefficient of friction of the negative fingerprint textured surface increases due to the occurrence of plastic deformation. The honeycomb textured surface has shown the highest coefficient of friction. The wear durability tests are also conducted at a normal load of 100 mN and a rotational speed of 500 rpm on the untextured/textured surfaces on SU-8 in the presence of an overcoat of a nano-lubricant, perfluoropolyether(PFPE). Six samples i.e. the untextured surface (Si/SU-8 and Si/SU-8/PFPE), the 3D negative fingerprint textured surface (Si/SU-8/FP and Si/SU-8/FP/PFPE) and the honeycomb textured surface (Si/SU-8/HC and Si/SU-8/HC/PFPE), each with and without PFPE nano-lubricant, have been investigated for their tribological behaviours. The negative fingerprint pattern on SU-8 with PFPE coating has shown the highest wear life of 60,000 cycles under a normal load of 100 mN. The reasons for excellent tribological performance of 3D fingerprinted SU-8 surface are analyzed using the Hertzian contact area calculation.  相似文献   

3.
SU-8 is an industrially useful photoresist polymer for micro-fabrication because of its unique UV-sensitive curing property. It is also used as a structural material for micro-machines such as micro-electro mechanical systems (MEMS). However, it has poor tribological and mechanical properties which make SU-8 inferior to Si, the mainstay MEMS material today. In this paper, we report the fabrication of SU-8 nanocomposites which are self-lubricating and have better mechanical properties. The liquid lubricant i.e., perfluoropolyether (PFPE) and nanoparticles such as SiO2, CNTs, and graphite were added into SU-8 for this purpose. These self-lubricating SU-8 + PFPE and SU-8 + PFPE + nanoparticle composites have shown a reduction in the initial coefficient of friction by ~6?C9 times and increased wear life by more than four orders of magnitude. The mechanical properties such as the elastic modulus and the hardness have increased by ~1.4 times. These SU-8 nanocomposites can be used as a self-lubricating structural material for MEMS applications requiring no external lubrication. As well, these nanocomposites can find applications in many tribological components of traditional machines.  相似文献   

4.
In this paper, the influence of single walled carbon nano tubes (SWCNTs) addition on the tribological properties of the polyimide (PI) films on silicon substrate was studied. PI films, with and without SWCNTs, were spin coated onto the Si surface. Coefficient of friction and wear durability were characterized using a ball-on-disk tribometer by employing a 4 mm diameter Si3N4 ball sliding against the film, at a contact pressure of ∼370 MPa, and a sliding velocity of 0.042 ms−1. Water contact angle, AFM topography, and nano-indentation tests were conducted to study the physical and mechanical properties of the films. SWCNTs marginally increased the water contact angle of PI film. The addition of SWCNTs to PI has increased the hardness and elastic modulus of pristine PI films by 60–70%. The coefficient of friction of PI films increased slightly (∼20%) after the addition of SWCNTs, whereas, there was at least two-fold increase in the wear life of the film based on the film failure condition of coefficient of friction higher than 0.3. However, the film did not show any sign of wear even after 100,000 cycles of rotation indicating its robustness. This increase in the wear durability due to the addition of the SWCNTs is believed to be because of the improvement in the load-bearing capacity of the composite film and sliding induced microstructural changes of the composite film.  相似文献   

5.
ABSTRACT

SU-8 polymer with talc particle (30?wt-%) and liquid perfluoropolyether (PFPE) (30?wt-%) fillers was used as a composite to fabricate conical tip-cantilever device. The composite tip demonstrated lower coefficient of friction (~0.22) when compared with a tip made of pure SU-8 (~0.65). Fluorine was detected on the wear track and the tip surface, which resulted from the transfer of PFPE from the tip to the wear track. The counterface made of pure SU-8 remained smooth and unworn when slid against the composite tip even after 1000 cycles of sliding. This composite with improved tribological and mechanical properties can be used for fabricating small component devices such as for micro-electro-mechanical systems (MEMS).  相似文献   

6.
In an earlier work, we demonstrated the development of SU-8 composites using perfluoropolyether (PFPE) as lubricant filler which reduced friction coefficient by ~7 times and enhanced wear life of SU-8 by more than four orders of magnitude. In this work, we have investigated the role of chemical bonding between SU-8 and PFPE molecules using two types of PFPE lubricants (i.e., Fomblin® Z-dol and Z-03) in improving the tribological properties of the composite. Z-dol has polar (–OH) end groups whereas Z-03 has non-polar (CF3) end groups. SU-8 with Z-dol (SU-8 + Z-dol) films yielded ~8 times greater wear life than SU-8 with Z-03 (SU-8 + Z-03) films and more by four orders of magnitude than pure SU-8. The nature of the films was analyzed in detail by chemical and physical characterization techniques like X-ray photoelectron spectroscopy, water contact angle and thermo-gravimetric analysis. The results validated the role of polar end functional group of Z-dol in covalent binding with SU-8 upon UV plasma treatment that resulted in improved tribological properties.  相似文献   

7.
《Wear》1986,112(1):57-66
The mechanical and tribological properties of polymers generally depend on the exact details of their molecular arrangements, i.e. both their crystalline morphology and their molecular orientation, these being intimately related. The objective of this paper is to investigate experimentally the effect of uniaxial prestraining of specimens of poly(vinyl chloride) (PVC) and polycarbonate (PC) on their friction and wear characteristics.For this purpose tensile sheet specimens of PVC and PC were uniaxially stretched to varying final extensions, thus obtaining various degrees of molecular orientation and mechanical anisotropy. Short pins were subsequently cut from these deformed sheets and tested at a sliding speed of 27.5 cm s−1 and a moderate normal load of 49 N in an instrumented pin-on-disc friction and wear testing machine with stainless steel as the rotating disc material. Results obtained on the friction coefficient and wear rates for various samples are presented and correlations are made with uniaxial prestrain, mechanical energy to fracture and loss modulus.  相似文献   

8.
Abstract

The use of surface coatings is emerging as one of the most important approaches in reducing friction and wear in various tribological applications. Even though single layer coatings have a wide range of applications, the performance of the single layer alone may not always be adequate to meet the desired tribological property requirements. Hence, coatings consisting of multilayers to meet different property requirements in demanding applications are required. In this study, the tribological properties of a graded composite multilayer coating, with a specific layer sequence of MoS2/Ti–MoS2/TiBN–TiBN–TiB2–Ti deposited on tool steel substrate, have been investigated at temperatures of 40 and 400°C respectively. The experimental results from the tests at 40°C have shown that the friction coefficient value ranges between 0·02 and 0·034. It was found that the deposition parameters influenced the friction and durability of the coatings. Higher substrate bias was found to result in higher friction, and the coating deposited at high substrate bias and low N2 flow showed the lowest durability. The friction coefficient and durability of the coatings were found to be highly dependent on temperature. At high temperature, the friction coefficient increases almost threefold, and the durability decreases significantly.  相似文献   

9.
MoS2–Cr coatings with different Cr contents have been deposited on high speed steel substrates by closed field unbalanced magnetron (CFUBM) sputtering. The tribological properties of the coatings have been tested against different counterbodies under dry conditions using an oscillating friction and wear tester. The coating microstructures, mechanical properties and wear resistance vary according to the Cr metal-content. MoS2 tribological properties are improved with a Cr metal dopant in the MoS2 matrix. The optimum Cr content varies with different counterbodies. Showing especially good tribological properties were MoS2–Cr8% coating sliding against either AISI 1045 steel or AA 6061 aluminum alloy, and MoS2–Cr5% coating sliding against bronze. Enhanced tribological behavior included low wear depth on coating, low wear width on counterbody, low friction coefficients and long durability.  相似文献   

10.
Though SU-8 has become a useful material for micro-fabrication of MEMS/NEMS components using the micro-fabrication route, its poor tribological properties limit its wider applications. From our previous study [1], it was observed that adding PFPE lubricant to SU-8 possibly promoted chemical reaction between the molecules and helped in the boundary lubrication enhancing the wear durability of SU-8 by more than four orders of magnitude. For further investigation, another two different lubricants, a base oil and a multiply-alkylated cyclopentane (MAC) oil, were also added to SU-8. Both lubricants are hydrocarbons, chemically inert and have no polar reactive terminal groups unlike PFPE which has –OH polar terminal groups. SU-8+PFPE composite exhibited higher wear life than all SU-8 composites at all wt% of the lubricant content. Proper dispersion and possible chemical bonding of PFPE molecules with SU-8 are responsible for the superior tribological properties of SU-8+PFPE composite when compared with other SU-8 composites.  相似文献   

11.
《Wear》2002,252(5-6):484-490
Textured silicon nitride, where the β-Si3N4 grains were uni-directionally aligned, was fabricated and the effect of anisotropy in microstructure on tribological properties was investigated, compared with a conventional Si3N4. The wear tests were carried out for the tribopair of textured silicon nitride ceramic and steel using a block-on-ring tester without lubrication. For the textured Si3N4, tribological properties were evaluated in three directions with respect to the grain alignment; the plane normal to the grain alignment and in the directions parallel and perpendicular to the grain alignment in the side plane. The friction coefficient values of each specimen were of the same level under the same sliding conditions. The values of specific wear rate for the plane normal to the grain alignment were lower than those of the other specimens for all sliding conditions. It is considered that the high wear resistance of this plane was caused by restricted microfracture, such as grain dropping and minimal abrasion by wear debris. Both the friction coefficient and specific wear rate were decreased with increasing sliding speed and normal load because of the formation of lubricative FeO between the sliding surfaces.  相似文献   

12.
SU-8, an epoxy-based negative photoresist polymer, is highly suitable for making micro-electro-mechanical systems (MEMS) structures. Despite fabrication advantages, its bulk mechanical and tribological properties are the main limitations for application as MEMS material. Carbon filler materials such as graphene, graphite and multi-walled carbon nanotube (MWCNT) are added to SU-8 for tribological and mechanical property enhancements. SU-8/(5 wt%) graphite composite has performed better for the steady-state coefficient of friction at all loads including for the speed effect. SU-8/(5 wt%) MWCNT has shown excellent wear resistance. At 10 wt% graphite content, SU-8/graphite is superior in tribological performance to other composites tested.  相似文献   

13.
Two grades of WC–10 wt.%Co cemented carbide with or without addition of Cr3C2/VC grain growth inhibitor during liquid phase sintering were produced with the goal to investigate their reciprocating sliding friction and wear behaviour against WC–6 wt.%Co cemented carbide under unlubricated conditions. The tribological characteristics were obtained on a Plint TE77 tribometer using distinctive normal contact loads. The generated wear tracks were analyzed by scanning electron microscopy and quantified topographically using surface scanning equipment. The post-mortem obtained wear volumes were compared to the online assessed wear. Correlations between wear volume, wear rate and coefficient of friction on the one hand and sliding distance and microstructural properties on the other hand were determined, revealing a significant influence of Cr3C2/VC on the friction characteristics and wear performance.  相似文献   

14.
《Wear》2006,260(1-2):99-108
This paper studies the continuous friction behavior of carbon–carbon composites (C/C) fabricated by the coal tar pitch densification process. In the densification process, different numbers of densification cycle are adopted to investigate the influence on physical properties, mechanical properties, microstructure and friction behavior. Experimental results indicate that open porosity decreases with the number of densification cycle. Both bulk density and flexural strength increase with the number of densification cycle. Apparent reduction in wear rate and average friction coefficient can be detected even if the lower densification cycle is adopted. As the number of densification cycle increases, C/C specimens exhibit the lower wear rate and smoother friction coefficient curves. Morphological observations show that the number of open pores for these materials decreases and they exhibit a denser morphology as the number of densification cycle increases. Furthermore, as the number of densification cycle increases, a smooth, adherent lubricating film is formed on the sliding surface. Therefore, the variation in average friction coefficient of specimens becomes smoother; in the meantime, the wear rate becomes lower.  相似文献   

15.
The effects of normal load and velocity on the friction and wear behavior of single-phase Fe2B bulk have been investigated by optical microscopy, X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. Results indicate that the friction coefficient and wear rate both decrease at first and then increase with increasing load and velocity, respectively. Attributed to the formation of a lamellar film on the Fe2B surface, the lowest friction coefficient and wear rate are obtained at a velocity of 0.2 m/s under a load of 12 N. The dynamic friction coefficients under loads of 4 and 12 N are around 0.8 in the initial steady stage and then decrease to about 0.6, whereas the friction coefficient at 20 N shows no obvious change and remains around 0.82. The lubricating film consisting of Fe2O3, B2O3, SiO2, and H3BO3 reduces the friction coefficient at 0.2 m/s under a load of 12 N.  相似文献   

16.
Nam P. Suh 《Wear》1979,53(1):129-141
The friction and wear behavior of composites (i.e. uniaxially oriented graphite fiber-epoxy, Kevlar fiber-epoxy and biaxially oriented glass fiber-MoS2-polytetrafluoroethylene (PTFE)) was investigated as a function of varying fiber orientations with respect to the sliding direction. In graphite fiber-epoxy composites, both wear and friction coefficients were minimum when the orientation of the fibers was normal to the sliding surface. In Kevlar-epoxy composites when the fibers were oriented normal to the surface and the sliding direction, the wear rate was also minimum but the friction coefficient was the highest. In glass fiber-MoS2-PTFE composites wear was minimum when the largest fraction of fibers was oriented normal to the sliding surface.  相似文献   

17.
This study consists of two stages. In the first stage, bronze-based break linings were produced and friction-wear properties of them were investigated. In the second stage, 0.5%, 1%, 2% and 4% alumina (Al2O3) powders were added to the bronze-based powders and Al2O3 reinforced bronze-based break linings were produced. Friction–wear properties of the Al2O3 reinforced samples were aslo investigated and compared to those of plain bronze-based ones. For this purpose, friction coefficient and wear behaviour of the samples were tested on the grey cast iron disc. The hardness and density of the samples were also determined. Microstructures of the samples before and after the sintering and the worn surfaces of the wear specimens were examined using a scanning electron microscope (SEM). The sample compacted at 350 MPa and sintered at 820 °C exhibited the optimum friction–wear behaviour. With increase in friction surface temperature, a reduction in the friction coefficient of the samples was observed. The lowest reduction in the friction coefficient with increasing temperature was for the 2% and 4% Al2O3 reinforced samples. The SEM images of the sample indicated that increase in Al2O3 content resulted in adhesive wear. With increase in Al2O3 content, a reduction in mass loss of the samples was also observed. Overall, the samples reinforced with 2% and 4% Al2O3 exhibited the best results.  相似文献   

18.
Tribological behavior of stir-cast Al–Si/SiCp composites against automobile brake pad material was studied using Pin-on-Disc tribo-tester. The Al-metal matrix composite (Al-MMC) material was used as disc, whereas the brake pad material forms the pin. It has been found that both wear rate and friction coefficient vary with both applied normal load and sliding speed. With increase in the applied normal load, the wear rate was observed to increase whereas the friction coefficient decreases. However, both the wear rate and friction coefficients were observed to vary proportionally with the sliding speed. During the wear tests, formation of a tribo-layer was observed, presence of which can affect the wear behavior, apart from acting as a source of wear debris. Tribo-layer formed over the worn disc surfaces was found to be heterogeneous in nature. Morphology and topography of worn surfaces and debris were studied using scanning electron microscope (SEM). Chemical composition of different wear products was obtained using electron probe micro analyzer (EPMA) and X-ray diffraction (XRD) techniques. Possible wear mechanisms operative in Al-MMC—brake pad tribo-couple have been discussed.  相似文献   

19.
Abstract

In this work, Al-20Si-5Fe-2Ni/ZrB2 composites with 0–20?wt% ZrB2 were fabricated by spark plasma sintering. The effects of ZrB2 content on the microstructure, mechanical properties and high-temperature tribological behavior of the composites were investigated. The results indicate that Si, Al5FeSi, and ZrB2 particles are uniformly distributed in the aluminum matrix. The density, hardness, and compressive strength increase with increasing ZrB2 content. The friction coefficient and wear rate are dependent on the ZrB2 content and test temperature. At a certain temperature, the friction coefficient increases with an increase in ZrB2 content, whereas the wear rate shows a reverse trend. Due to the improvement in thermal stability and high-temperature softening resistance, the composite shows improved wear resistance and increased transition temperature from mild wear to severe wear.  相似文献   

20.
Metal‐free amorphous carbon (a‐C:H) coatings with 15% hydrogen were deposited on bearing steel surfaces. The friction and wear performance of these specimens was characterised in oscillating sliding tests with a ball‐on‐flat geometry. Balls of four ceramic and four metallic materials were investigated in tests at room temperature. Special attention was paid to the effect of moisture by testing in dry, normal, and moist air. The effect of water vapour on the friction and wear of the a‐C:H coatings was quite different for the different counterbody materials. The wear was in all cases very low, with a coefficient of wear below 10−7 mm3/N m for most cases. The coefficient of friction was also very low, between 0.04 and 0.12 for most of the tests. The smallest wear and friction coefficients were found for oxide ceramics, while during tests against SiC and Si3N4 the coating was worn through during the test. The effects of counterbody material and the humidity of the surrounding air are discussed in terms of friction and wear mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号