首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Internal combustion engines are still of major importance as propulsion systems. To fulfil future market and legislative demands it is necessary to improve engine performance, reduce fuel consumption, and limit exhaust emissions. Mechanical and thermodynamic losses, wear, and the emissions caused by lubricating oil combustion are principally influenced by the tribological behaviour of the piston assembly. The trend towards compact engines with high power densities and increased thermomechanical loads increases the importance of this tribological system and requires new approaches. One promising possibility is the utilisation of liner surfaces with specially machined microstructures. This paper describes a comparison between a conventional liner surface and a laser‐structured liner as regards their tribological behaviour. Measurements of wear as well as of oil film thickness and friction force in operation have been carried out. The results show better tribological behaviour for the laser‐structured liner surface than for the conventional plateau‐honed surface. This leads to lower fuel consumption and less wear.  相似文献   

2.
A.V. Sreenath  N. Raman 《Wear》1976,38(2):271-289
The conformance between the liner and rings of an internal combustion engine depends mainly on their linear wear (dimensional loss) during running-in. Running-in wear studies, using the factorial design of experiments, on a compression ignition engine show that at certain dead centre locations of piston rings the linear wear of the cylinder liner increases with increase in the initial surface roughness of the liner. Rough surfaces wear rapidly without seizure during running-in to promote quick conformance, so an initial surface finish of the liner of 0.8 μm c.l.a. is recommended. The linear wear of the cast iron liner and rings decreases with increasing load but the mass wear increases with increasing load. This discrepancy is due to phase changes in the cast iron accompanied by dimensional growth at higher thermal loads. During running-in the growth of cast iron should be minimised by running the engine at an initial load for which the exhaust gas temperature is approximately 180 °C.  相似文献   

3.
Abstract

A one-dimensional elstohydrodynamic mixed lubrication wear and friction model is developed. The model can predict the effects of surface roughness, asperity contact, temperature-pressure-viscosity on wear, lubrication, and friction of the piston rings and cylinder liner. Wear is predicted based on the surface asperity contact pressure. The cylinder bore wear and the ring pack friction during an engine break-in are simulated and compared with the experimental results. The influence of cylinder wall temperature and surface roughness on friction and wear is investigated. The ring pack friction due to oil viscous shearing and asperity contact is found to reach its minimum at a certain oil temperature.  相似文献   

4.
A method is presented for the experimental and calculated estimation of the reliability of internal combustion engine liners exposed to the cavitational-erosive effect of liquid coolant. Combating corrosion of liners of high-and medium-speed engines has remains important because the life of liners with regard to cavitation erosion is approximately four times shorter than that with regard to the cylinder face wear and parts are rejected on the basis of the maximum allowable depth of erosion pits on the water-cooled surface. The procedure of estimating the durability of liners assumes the successive determination of their amplitude-frequency characteristics, the period of damage accumulation, and the highest erosion rate and then an estimation of the liner durability using the kinetic dependence of wear at the moment when the pit depth reaches 75% of the liner wall thickness. By the example of a 2Ch 8.5/11 engine, a satisfactory correlation is demonstrated between experimental data and the results of engine service.  相似文献   

5.
Surface groove width is of great significance to the performance of the cylinder liner–piston ring (CLPR) with the different surface textures in marine diesel. However, little is understood about the specific application (e.g., the geometric parameters of surface textures and operating conditions) of surface texture in actual marine diesel engines. To address this issue, different surface groove textures including grooves structures with 1-, 2-, 3-, and 4-mm widths were designed based on previous results related to marine diesel engine applications. A series of experimental tests was conducted in a reciprocation tester, and data on the friction characteristics were obtained under different operating conditions. Comparative studies on the friction coefficients, worn surface features, and oil film characteristics were performed. Results showed that the 2-mm groove structure of the cylinder liner was more favorable for improving the wear performances at low speed, whereas a 3-mm groove structure of the cylinder liner was more suitable for improving the wear performance at higher speeds, though its wear performance needs to be improved under high load. These results help to understand the specific application of surface texture on the wear performance of the CLPR pair.  相似文献   

6.
Anticipated emission legislation and reduced fuel consumption are the main driving forces when developing new engines. Optimization of the active surfaces in the piston system is one possible way to meet the above demands. In this study the effects of surface topography and texture direction of the ring/liner contact on oil film thickness and friction were simulated and experimentally tested. “Low wear” results from the experimental wear tests with “glide honed” smooth liner surfaces supported the “low friction” simulation results. In addition a new wear volume sensitive surface roughness parameter, Rktot, based on the Abbot–Firestone bearing area curve was introduced.  相似文献   

7.
《Wear》1987,118(1):57-75
The wear of the piston ring-cylinder wall contact area in fired engines has not been satisfactorily simulated in bench testers so far. This paper reports the development of a successful test device in which the same progression of surface change occurs as in fired engines. These changes were observed by microscopy, by hardness indentations and by the use of the stylus roughness tracer. The test device uses ring and cylinder segments and it oscillates at 350 cycles min-1 over a stroke of 19 mm. It is apparently not necessary to duplicate the temperature, atmosphere, fluid film thickness and other obvious conditions in an engine to achieve simulation. At least, the materials in the engine were not affected by the conditions in the engine that were not duplicated in the laboratory tester.The purpose in developing the tester was to study the role of the honed roughness pattern found on most cylinder walls. Several engine manufacturers attempt to achieve “fplateau honing”. No manufacturer polishes new cylinder walls. The reason for the honed roughness is to allow a high wear rate, without catastrophic scuffing, in locations of high stress between poorly conforming parts.  相似文献   

8.
发动机缸套工作表面的质量对发动机的工作性能、使用寿命以及经济性能有着重要的的影响.发动机缸孔平台网纹珩磨技术就是保证缸孔表面质量的重要手段,论文简要介绍平台网纹珩磨加工技术的优势、加工原理、评价方法及关键技术参数,并将其应用到V6、4GB发动机缸套实际加工.取得了很好的效果。  相似文献   

9.
段京华  孙军 《润滑与密封》2015,40(12):56-60
以一多缸内燃机为对象,研究表面粗糙度和润滑油黏度对活塞裙-缸套摩擦副润滑性能的影响。建立活塞二阶运动方程与平均Reynolds方程相结合的活塞裙-缸套摩擦副润滑分析模型。活塞二阶运动方程采用Broyden方法求解,应用有限差分法进行活塞裙-缸套摩擦副的润滑分析。结果表明,表面粗糙度对活塞裙-缸套摩擦副润滑性能影响不明显,而随润滑油黏度增加,活塞裙-缸套摩擦副的最小油膜厚度、摩擦力和摩擦功率增加,最大油膜压力在进气和排气行程随润滑油黏度变化比较明显,在其他行程变化较小。  相似文献   

10.
Abnormal wear of a piston ring-cylinder liner pair may happen after 9 min hot tests of internal combustion engines, while the engine performance parameters were within predetermined threshold ranges. Few differences were observed among oil samples from the engines with or without abnormal wear in the spectrometric and Kittiwake Analex PQ analysis. Therefore, a manual confirmation by disassembling the oil pan was often required. In this work, an oil monitoring method for wear evaluation of the engines was proposed. The oil samples were rapidly analyzed on site by on-line visual ferrograph (OLVF). For the abnormal engines, it was found that the index of particle coverage area (IPCA), characterizing the wear debris concentration, was low. Moreover, large debris was rarely observed on OLVF ferrograms, which was consistent with the results obtained from analytical ferrography, and the reason was analyzed and discussed. In addition, an on-site abnormal wear evaluation procedure for the 9 min hot tests was proposed based on a trained Naive Bayes Classifier. As observed from the results of 27 engines, 4 abnormal engines were found. Among one of them, longitudinal scratches were found on the cylinder wall, which were evaluated as abnormal wear by the classifier. This method can cut down the quantity of disassembly inspection and is more efficient.  相似文献   

11.
为研究柴油机实车使用状况下缸套-活塞环磨损规律,建立某12150型多缸柴油机面向使用工况的缸套-活塞环磨损仿真计算方法并进行验证,研究环境与工况参数对缸套磨损的影响规律。结果表明:大气温度升高,缸套磨损深度呈现先减小后增大的趋势,气温-5℃时磨损最小,与-35℃相比下降了5.89%,与40℃相比下降了9.15%;大气压力降低,缸套磨损深度先减小后增大,气压80 kPa时最小,与100 kPa相比下降了6.45%,气压50 kPa时磨损最大,与100 kPa相比升高了8.48%;缸套磨损深度随柴油机转速升高而呈现出增加的趋势,在1 600 r/min时出现极小值点,转速为2 000 r/min相比1 200 r/min磨损深度增加了46.76%;柴油机负荷增加引起缸套磨损深度不断增大,100%负荷时较20%负荷的磨损深度升高了133.96%。  相似文献   

12.
The effects of recirculated exhaust gas on the wear of cylinder liner and piston were experimentally investigated by a two-cylinder, four cycle, indirect injection diesel engine operating at 75% load and 1600 rpm. For the purpose of comparison between the wear rates of the two cylinders with and without EGR, the recirculated exhaust gas was sucked into one of two cylinders after the soot in exhaust emissions was removed by an intentionally designed cylinder-type scrubber equipped with 6 water injectors (A water injector has 144 nozzles of mm diameter), while only the fresh air was inhaled into the other cylinder. These experiments were carried out with the fuel injection timing fixed at 15.3° BTDC. It was found that the mean wear rate of cylinder liner with EGR was greater in the measurement positions of the second half than those of the first half, that the mean wear rate without EGR was almost uniform regardless of measurement positions, and that the wear rate of piston skirt with EGR increased a little bit, but the piston head diameter increased, rather than decreased, owing to soot adhesion and erosion wear, and especially larger with EGR.  相似文献   

13.
In large, slow, cross‐head marine diesel engines research has increasingly shown that the lubrication regime between piston rings and cylinder liner at top dead centre is of the boundary lubrication type due to the high gas pressure, low sliding speed, and high temperature. This means that the tribological properties of piston ring, cylinder liner, and cylinder lubricant in these types of engine under boundary lubrication conditions should be considered simultaneously when friction and wear between the piston ring and cylinder liner are studied. Until now there has been no standard method to evaluate boundary lubrication performance. There are a few traditional methods used in lubricant research, but their results are not correlated with service conditions. It is important to find a suitable method to evaluate the boundary lubrication performance of lubricants at the laboratory testing stage or before the engine testing stage. The important parameters, such as sliding speed, normal load, materials of the contacting pairs, and lubricant, need all to be controlled. In this paper a systematic experimental procedure, the ‘five times heating and cooling test’, is introduced to assess lubricant properties under boundary lubrication conditions. Most of the parameters mentioned above are controlled. The model contact, of pin‐on‐plate form, is made from the actual piston and liner materials used in a large‐bore, slow, cross‐head marine diesel engine. The temperature characteristics of different blends of lubricants are investigated under boundary lubrication conditions using a pin‐on‐plate reciprocating test rig. These blends of lubricants have the same additives but different base fluids; they nevertheless fulfil the physical and chemical requirements of a real marine diesel engine. The test temperature range is from room temperature to the working temperature of the top piston ring. The experiments show that there are different temperature—friction characteristics for lubricants with different bases and the same additive package and there are also different temperature—friction characteristics during heating up and cooling down for each blend. Single‐base lubricants have more promising temperature—friction characteristics than those of a blend of a high‐viscosity base and a low‐viscosity base at high temperature.  相似文献   

14.
Material characterization and wear evaluation of the original and replacement pistons and cylinder liners from a Tiger 131 are reported. The original piston and cylinder liner were operative in the Tiger engine during WWII. The replacement piston and cylinder liner were used as substitutes and were obtained after failure in 2 h of operation in the actual engine. Material characterization revealed that the original piston was aluminum silicon hypereutectic alloy approximately matching the specification of RSA-419 AE, with a silicon content of 19.92 wt%. The replacement piston was aluminum copper alloy with a low silicon content of 0.73 wt%, approximately satisfying specifications of Al 2031 and Al 2618-T6. Scuffing, material removal, and ploughing were observed in the replacement piston and cylinder liner. These failures were attributed to inadequate piston material and design. The replacement piston average surface roughness was 9.09 μm and for the replacement cylinder liner it was 5.78 μm. Characterization results showed that both the original and replacement cylinder liners consisted of mostly iron, which is indicative of cast iron, a common material for this application.  相似文献   

15.
A study of the essential features of piston rings in the cylinder liner of an internal combustion engine reveals that the lubrication problem posed by it is basically that of a slider bearing. According to steady-flow-hydrodynamics, viz. the oil film thickness becomes zero at the dead centre positions as the velocity, U = 0. In practice, however, such a phenomenon cannot be supported by consideration of the wear rates of pistion rings and cylinder liners. This can be explained by including the “squeeze” action term in the hydrodynamic theory, viz. .This article introduces the equations of the above theory along with the viscosity variation over the piston stroke length; the piston ring profile is assumed as a double parabola with a central straight portion.The results of this analysis as applied to internal combustion engines are presented and compared with other earlier analysis.  相似文献   

16.
Minlin Zhong  Wenjin Liu  Hongjun Zhang 《Wear》2006,260(11-12):1349-1355
To reduce the mixed fuel induced excessive wear of the cast iron engine cylinder liners, research on laser alloying of NiCr alloy with powder feeding was performed to locally change both the composition and the microstructure of the liner. The research indicated that laser alloying of 75Ni25Cr on grey cast iron liner demonstrates sound alloying layers free of cracks and porosities. The microstructure of the alloyed layer is composed of pre-eutectic austenite and ledeburite. The alloying element Ni is mainly located in the austenite, while Cr is mainly in cementite. The average hardness is HV0.2500. The corrosion resistance of the alloyed layers in diluted H2SO4 solution and NaOH solution is dramatically improved compared to the grey cast iron. The relative wear resistance of the laser-alloyed 75Ni25Cr layer is 4.34 times of that of the grey cast iron. The improvements on the corrosion and wear resistance of the cast iron are attributed to the composition and microstructure change by laser alloying of 75Ni25Cr. Laser alloying can be a good solution to improve wear and corrosion resistance of the grey iron liners in mixed fuel environment.  相似文献   

17.
This paper reports an experimental study of the effect of surface texture on cylinder liner wear. This research is important because the conjunction between piston rings and cylinder liner is one of the major sources to frictional losses in internal combustion engines. Experiments were conducted on a reciprocating tester. Specimens were cut from cylinder liners honed or plateau honed made of grey cast iron of hardness 218 HB. The honing operation was performed in order to obtain very similar values of the Sq parameter of one-process and two-process surfaces. In addition, one-process specimens characterised by different Sq parameter values were tested. Counter-specimens were made from chromium-coated steel C45. It was found that wear of two-process surfaces was lower than that of one-process surfaces characterized by the same Sq parameter. Linear wear of specimens was proportional to initial Sq parameter value. The effect of additional oil pockets created by the burnishing technique on cylinder liner wear was negligible.  相似文献   

18.
Laser surface texturing (LST) technique was utilised on a cylinder liner in a diesel engine. In order to analyse the effect of LST micro‐dimples on the lubrication and friction properties of cylinder liner–piston ring (CL–PR), we developed a new mixed lubrication model on the basis of the average Reynolds equation and asperity contacts equation. The model can consider the coupling effects between the surface roughness of non‐texturing regions and micro‐dimples and the synergistic effects of multi‐micro‐dimples. The results show that cylinder liner surface by LST can form effective hydrodynamic lubrication effect in most regions of the strokes, only near the dead points, the friction pair is in mixed lubrication state, asperity contact plays a major role in balancing the external load and the asperity friction force is obvious. The micro‐dimple parameters were optimised to obtain a better lubrication effect with the following optimised results: rp = 30–60 µm, Sp = 0.2–0.4 and e = 0.03–0.1. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The manufacturing and finishing (honing) of cylinder liners for the automotive industry is a constant challenge in order to reduce friction losses and oil consumption. A better knowledge of surfaces generated during plateau honing is then required for optimization of the process. Despite a well-known and controlled honing process, variations in surface roughness appear due to honing tool wear and need to be mapped and analyzed. The following paper proposes to map the variations in roughness by using confocal 3D measuring equipment able to inspect any area of a cylinder liner. Six motor blocks, each with five cylinder liners, were evaluated with 20 topography measurements per liner (giving six hundred 3D measurements in total). In addition to standard 3D roughness parameters, tailor made parameters extracting honing texture information are computed. The results show that only a few parameters (Spk, Ssc and Sk) do correlate with the honing tool wear specific to each cylinder. Tailor made parameters indicate similar results. Indeed, as the honing tool wears down, the cylinder liner surface gets rougher plateau or peaks and sharper asperities indicating that ploughing occurs instead of cutting. In future, experimental models could be built in order to perform production and functional optimizations.  相似文献   

20.
Damage that originates from abnormal wear in the cylinder liner of marine diesel engines causes a considerable loss of property to manage shipping vessels. However, because multiple factors contribute to such damage, it is difficult to anticipate the damage that is caused by abnormal wear, such as scuffing, by investigating the mechanism of abnormal wear. Therefore, several methods have been explored for predicting the abnormal wear between the cylinder liner and the piston ring in marine diesel engines. For example, methods that are based on an analysis of the temperature, vibration, or cylinder drain oil have been researched. However, the response time of such methods is too slow for an operator to have enough time to promptly cope with severe damage. The implementation of such methods also requires prior modifications to the engine, which cost time and money. To overcome such problems, methods of prediction that use AE (acoustic emission) have been widely investigated. Studies on the relationship between abnormal wear and AE signals have demonstrated that severe damage is preceded by a change in the RMS value of AE and the FFT amplitude of a specific frequency. However, previous studies on the AE technique were based on the offline analysis of stored data due to their focus on the relationship between abnormal wear and AE signals. Thus, for direct implementation of the AE technique in industry, a real-time diagnostic system is needed. This paper focuses on the development of a real-time diagnostic system for analyzing high speed AE signals and examining the wear status of cylinder liners in marine diesel engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号