首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiO2- and CeO2-promoted bulk Ni2P catalysts were prepared by impregnation and in-situ H2 temperature-programmed reduction method. The prepared catalysts were characterized by XRD and XPS. The hydrogenation activities of the catalysts were studied using 1.5 wt.% 1-heptene in toluene and 1.0 wt.% phenylacetylene in ethanol as the model feeds. The results indicate that bulk Ni2P possesses low hydrogenation activity but is tunable by simply controlling the content of the additives (TiO2 or CeO2), suggesting that TiO2 and CeO2 are effective promoters to enhance the hydrogenation activity of Ni2P.  相似文献   

2.
A series of MnOx–CeO2 mixed oxide catalysts with different compositions prepared by sol–gel method were tested for the catalytic combustion of chlorobenzene (CB), as a model of volatile organic compounds of chlorinated aromatics. MnOx–CeO2 catalysts with different ratios of Mn/Ce + Mn were found to possess high catalytic activity in the catalytic combustion of CB, and MnOx(0.86)–CeO2 was identified as the most active catalyst, on which the temperature of complete combustion of CB was 254 °C. Effects of systematic variation of reaction conditions, including space velocity and inlet CB concentration on the catalytic combustion of CB were investigated. Additionally, the stability and deactivation of MnOx–CeO2 catalysts were studied by various characterization methods and other assistant experiments. MnOx–CeO2 catalysts with high Mn/Ce + Mn ratios present a stable high activity, which is related to their high ability to remove the adsorbed Cl species and a large amount of active surface oxygen.  相似文献   

3.
Shan Xu 《Fuel》2005,84(5):563-567
Nickel catalysts over the CeO2-ZrO2 solid solution were successfully prepared by the co-precipitation method for partial oxidation of methane. The structures of the catalysts were systematically examined by N2 adsorption/desorption, CO chemisorption, X-ray diffraction (XRD) and H2-TPR techniques. The catalytic performance and carbon deposition were investigated for partial oxidation of methane as well. The results showed that the Ni/CeO2-ZrO2 catalysts had a large BET area and fine Ni dispersion. By the co-precipitation method, Ni and CeO2-ZrO2 solid solution had strong interaction confirmed by the H2-TPR analysis. The Ni/CeO2-ZrO2 catalysts showed high activity and stability and the Ni/Ce0.25Zr0.75O2 exhibited the best activity and coking resistance among these catalysts. The catalytic activities and coking resistant behaviors of catalysts were affected by the surface and structural properties of the catalysts.  相似文献   

4.
MnOx–CeO2 mixed oxide catalysts prepared by sol–gel method were tested for the catalytic combustion of chlorobenzene (CB), as a model of chlorinated aromatic volatile organic compounds (CVOCs). MnOx–CeO2 catalysts with the different ratio of Mn/Ce + Mn were found to possess high catalytic activity for catalytic combustion of CB, and MnOx(0.86)–CeO2 was the most active catalyst, on which the complete combustion temperature (T90%) of chlorobenzene was 236 °C. The stability of MnOx–CeO2 catalysts in the CB combustion was investigated. MnOx–CeO2 catalysts with high Mn/Ce + Mn ratios present high stable activity, which is related to their high ability to remove Cl species adsorbed and a large amount of active surface oxygen.  相似文献   

5.
X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) have been used to characterize a series of Cu/Ce/Al2O3 catalysts. Catalysts were prepared by incipient wetness impregnation using metal nitrate and alkoxide precursors. Catalyst loadings were held constant at 12 wt% CuO and 5.1 wt% CeO2. Mixed oxide catalysts were prepared by impregnation of cerium first, followed by copper. The information obtained from surface and bulk characterization has been correlated with CO and CH4 oxidation activity of the catalysts. Cu/Al2O3 catalysts prepared using Cu(II) nitrate (CuN) and Cu(II) ethoxide (CuA) precursors consist of a mixture of copper surface phase and crystalline CuO. The CuA catalyst shows higher dispersion, less crystalline CuO phase, and lower oxidation activity for CO and CH4 than the CuN catalyst. For Cu/Ce/Al2O3 catalysts, Ce has little effect on the dispersion and crystallinity of the copper species. However, Cu impregnation decreases the Ce dispersion and increases the amount of crystalline CeO2 present in the catalysts, particularly in Ce modified alumina prepared using cerium alkoxide precursor (CeA). Cerium addition dramatically increases the CO oxidation activity, however, it has little effect on CH4 oxidation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
CuO/Ce0.8Zr0.2O2 and CuO/CeO2 catalysts were prepared via a impregnation method characterized by using FT-Raman, XRD, XPS and H2-TPR technologies. The catalytic activity of the samples for low-temperature CO oxidation was investigated by means of a microreactor-GC system. The influence of the calcination temperature and different supports on the catalytic activity was studied.  相似文献   

7.
CH4/CO2 reforming over Pt/ZrO2, Pt/CeO2 and Pt/ZrO2 with CeO2 was investigated at 2 MPa. Pt/ZrO2, which shows stable activity under 0.1 MPa, and Pt/CeO2 showed gradual deactivation with time at the high pressure. The deactivation was suppressed drastically on Pt/ZrO2 with CeO2 prepared by different impregnation order (co-impregnation of Pt and CeO2 on ZrO2, and consecutive impregnation of Pt and CeO2 on ZrO2). The amount of coke deposition was found insignificant and similar among all the catalysts (including Pt/ZrO2 and Pt/CeO2). Catalytic activity after the reaction for 24 h was in agreement with Pt particle size after the reaction for same period, indicating that the difference of the catalytic stability is mainly dependent on the extent of Pt aggregation through catalyst preparation, H2 reduction, and the CH4/CO2 reforming. Pt aggregation and the amount of coke deposition were least pronounced on (Pt–Ce)/ZrO2 prepared by impregnation of CeO2 on Pt/ZrO2 and the catalyst showed highest stability.  相似文献   

8.
The effect of the addition of CeO2 to Pt/C catalysts on electrochemical oxidation of alcohols (methanol, ethanol, glycerol, ethylene glycol) was studied in alkaline solution. The ratios of Pt to CeO2 in the catalysts were optimised to give the better performance. The electrochemical measurements revealed that the addition of CeO2 into Pt-CeO2/C catalysts could significantly improve the electrode performance for alcohols oxidation, in terms of the reaction activity and the poisoning resistance, due to the synergistic effect. The electrode with the weight ratio of Pt to CeO2 equals 1.3:1 with platinum loading of 0.30 mg/cm2 showed the highest catalytic activity for oxidation of ethanol, glycerol and ethylene glycol.  相似文献   

9.
A series of Pd ion-substituted CeO2–ZrO2 solid solutions were synthesized using the solution combustion technique. H2O2-assisted degradation of orange G was carried out in the presence of the catalysts. The activity of the catalysts was found to increase with the introduction of the second component in the solid solution, as signified by an increase in the rate constants and lowering of activation energy. The study showed the involvement of lattice oxygen and the importance of reducibility of the compound for the reaction.  相似文献   

10.
Catalytic combustion of ethyl acetate was investigated over various CeO2-supported precious metal catalysts prepared by impregnation method, and the effect of reduction treatment on the activity was examined. Among the catalysts tested, Ru/CeO2 achieved the highest activity for ethyl acetate combustion, and the activity was almost unchanged by the heat treatment in a hydrogen atmosphere. In the cases of Pt/CeO2, Pd/CeO2, and Rh/CeO2, the catalytic activity was enhanced by the reduction treatment at 400 °C, though the activity of the reduced catalysts was still inferior to that of Ru/CeO2. It was confirmed by temperature-programmed reduction that the reduction of the ruthenium species was initiated at the lowest temperature among the CeO2-supported precious metals. The precious metal species reducible at lower temperatures should be responsible for the high activity in the complete oxidation of ethyl acetate.  相似文献   

11.
Activity and selectivity of selective CO oxidation in an H2-rich gas stream over Co3O4/CeO2/ZrO2, Ag/CeO2/ZrO2, and MnO2/CeO2/ZrO2 catalysts were studied. Effects of the metaloxide types and metaloxide molar ratios were investigated. XRD, SEM, and N2 physisorption techniques were used to characterize the catalysts. All catalysts showed mesoporous structure. The best activity was obtained from 80/10/10 Co3O4/CeO2/ZrO2 catalyst, which resulted in 90% CO conversion at 200°C and selectivity greater than 80% at 125°C. Activity of the Co3O4/CeO2/ZrO2 catalyst increased with increase in Co3O4 molar ratio.  相似文献   

12.
The glycothermal (GT) reaction of Ce acetate and Zr alkoxide directly yielded CeO2-ZrO2 solid solutions in a region of low Ce content ≤40 mol%. Of the CeO2-ZrO2 solid solutions obtained by the GT method and subsequent calcination at 500 or 800 °C, the sample with 20 mol% Ce content had the largest BET surface area. This sample exhibited the highest Ce-based oxygen release capacity in the whole Ce/Zr composition range. The oxygen release capacities of CeO2-ZrO2 solid solutions synthesized by the GT method were much larger than those of the samples prepared by a coprecipitation (CP) method. The Reitveld analysis and the repetitive reduction-oxidation experiment indicated that the CeO2-ZrO2 solid solution synthesized by the GT method has a homogeneous structure as compared with that prepared by the CP method.  相似文献   

13.
In this investigation, CuO/CeO2–MxOy (MxOy = Al2O3, ZrO2 and SiO2) nanocomposite oxide catalysts were prepared by deposition-precipitation and wet impregnation methods, and evaluated for CO oxidation. Catalysts were characterized by XRD, TEM, UV–vis DRS, BET surface area and H2-TPR techniques. The synthesized catalysts exhibited high specific surface area, and uniform particle size distribution over the supports. The nanocrystalline texture of mixed metal oxides is clearly evidenced by TEM analysis. TPR and XRD results revealed synergetic interactions between copper oxide and ceria. Among various catalysts investigated, the CuO/CeO2–Al2O3 combination exhibited excellent CO oxidation activity with T1/2 = 374 K and 100% CO conversion at below 420 K.  相似文献   

14.
Au/CeO2 catalysts prepared by co-precipitation (CP) and deposition-precipitation (DP) methods were tested for low temperature CO oxidation reaction. The structural characters and redox features of the catalysts were investigated by XRD, XPS and H2-TPR. Their catalytic performances for low temperature CO oxidation were studied by means of a microreactor -GC system. It showed that the catalytic activities of Au/CeO2 catalysts greatly depended on the preparation method. The catalysts prepared by DP method exhibited a surprisingly higher activity towards CO oxidation than that prepared by CP method. This may arise from the differences in the particle sizes of Au and redox properties of the catalysts. The low Au loading and the resistance to high temperature of DP-prepared catalyst made it more applicable.  相似文献   

15.
Ni/AC catalysts promoted with or without CeO2 for vapor phase carbonylation of ethanol to propionic acid were tested and investigated by CO chemisorption, XRD and H2-TPR techniques. The catalytic test results showed that the proper amount of CeO2 addition could remarkably enhance the activity and stability of Ni/AC catalyst. The characterization results indicated that CeO2 added can improve the dispersion and metal area of Ni on the catalyst, suppress the sintering of Ni crystallite and benefit the reduction of Ni, which are closely related to high performance of the Ni/AC catalyst promoted with CeO2.  相似文献   

16.
Zhihui Zhu  Dehua He   《Fuel》2008,87(10-11):2229-2235
CeO2–TiO2 (Ce:Ti = 0.25–9, molar ratio) catalysts were synthesized by a sol–gel method and the catalytic performances were evaluated in the selective synthesis of isobutene and isobutane from CO hydrogenation under the reaction conditions of 673–748 K, 1–5 MPa and 720–3000 h−1. The physical properties, such as specific surface area, cumulative pore volume, average pore diameter, crystal phase and size, of the catalysts were characterized by N2 adsorption/desorption and XRD. All the CeO2–TiO2 composite oxides showed higher surface areas than pure TiO2 and CeO2. No TiO2 phase was detected on the samples of CeO2–TiO2 in which TiO2 contents were in the range of 10–50 mol%. Crystalline Ce2O3 was detected in CeO2–TiO2 (8:2). The reaction conditions, temperature, pressure and space velocity, had obvious influences on the CO conversion and distribution of the products over CeO2–TiO2 (8:2) catalyst.  相似文献   

17.
Nanocrystalline TiO2, CeO2 and CeO2-doped TiO2 have been successfully prepared by one-step flame spray pyrolysis (FSP). Resulting powders were characterized with X-ray diffraction (XRD), N2-physisorption, Transmission Electron Microscopy (TEM) and UV-Vis spectrophotometry. The TiO2 and CeO2-doped TiO2 nanopowders were composed of single-crystalline spherical particles with as-prepared primary particle size of 10-13 nm for Ce doping concentrations of 5-50 at%, while square-shape particles with average size around 9 nm were only observed from flame-made CeO2. The adsorption edge of resulting powder was shifted from 388 to 467 nm as the Ce content increased from 0 to 30 at% and there was an optimal Ce content in association with the maximum absorbance. This effect is due to the insertion of Ce3+/4+ in the TiO2 matrix, which generated an n-type impurity band.  相似文献   

18.
The effect of preparation method on MnO x –CeO2 mixed oxide catalysts for methane combustion at low temperature was investigated by means of BET, XRD, XPS, H2-TPR techniques and methane oxidation reaction. The catalysts were prepared by the conventional coprecipitation, plasma and modified coprecipitation methods, respectively. It was found that the catalyst prepared by modified coprecipitation was the most active, over which methane conversion reached 90% at a temperature as low as 390 °C. The XRD results showed the preparation methods had no effect on the solid solution structure of MnO x –CeO2 catalysts. More Mn4+ and richer lattice oxygen were found on the surface of the modified coprecipitation prepared catalyst with the help of XPS analysis, and its reduction and BET surface area were remarkably promoted. These factors could be responsible for its higher activity for methane combustion at low temperature.  相似文献   

19.
CeO2/acrylic hybrid coatings with high solids content and with nanoparticle percentages up to 5 wt% have been successfully synthesized by seeded semibatch miniemulsion polymerization process. The droplet nucleation efficiency has been assessed by Capillary Hydrodynamic Chromatography and TEM analysis. The effect of the stability of the miniemulsion, the type of initiator and the number of particles of the seed on the efficiency of the nucleation of the nanodroplets fed has been investigated. It was found that the less stable the hybrid miniemulsion, the higher the diffusion of the monomer out of the droplets and hence, the seed latex particles grew in size. However, the CeO2 nanoparticles did not diffuse out with the monomer and remained in very small droplets that eventually nucleate leading to a bimodal population. When stable miniemulsions were produced by using a polymer as hydrophobe, droplet size increased reducing the number of particles in the seed and monomer diffusion was minimized enhancing nucleation of droplets with larger sizes that produced broad PSDs. Coalescence of droplets was negligible because the size distribution of the nanoceria particles did not change from the seed particles to the final latex. The UV–Vis absorption capacity of the films prepared with increasing the amount of CeO2 increased, but scattering effects were observed at high loading of CeO2 due to the large size of the CeO2 aggregates.  相似文献   

20.
The effect of various additives (V, Cr, Mn, Fe, Co, Ni, Cu and Pb) on the oxygen storage capacity (OSC) of CeO2 and Rh/CeO2 catalysts was investigated. Copper is an excellent promoter of OSC conferring to Rh a very high resistance to sintering (900°C, 2% O2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号