首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
在动态网络中发现社区结构是一个非常复杂而有意义的过程,可以更好地观察和分析网络的演化情况。针对动态加权网络中的社区发现问题,提出了一种结合历史网络社区结构的算法,叫做动态加权网络中的演化社区发现算法(ECDA)。该算法分为两步:结合历史社区和网络结构信息,计算当前时间跳的输入矩阵;然后通过该输入矩阵计算得到结合历史时间跳信息的社区划分结果。该算法有以下优点:可以自动发现动态加权网络中每个时间跳的社区结构;对网络结构的变化和社区结构的变化具有较高的敏锐性。在人工数据集和真实数据集中进行了实验,实验结果证明该算法可以有效地发现动态加权网络中的社区结构,与其他算法相比具有较好的竞争力。  相似文献   

2.
在线社会网络研究中,动态隐含社区或群组结构的发现及演化探测是一个十分关键的核心问题,它对于在中观(Mesoscopic)视图观察在线社会网络隐结构特征、预测演化趋势、掌控网络势态、发现网络异常群体事件等具有重要意义.文中首先分析了动态社区发现和社区演化研究的关系,给出动态社区研究中关键挑战问题;然后根据问题背景的不同,从“同构社会网络的动态社区研究”和“异构社会网络的动态社区研究”两个方面进行国内外相关研究现状的阐述和分析,其中,在“同构社会网络的动态社区研究”中,根据评价方法的差异和关注问题的不同将当前相关研究分为基于时空独立评价、时空集成评价、统一评价和增量式算法4大类进行综述,同时对动态社区发现的重要应用——异常群体发现的研究进行介绍;最后对在线社会网络动态社区领域的难点和发展趋势进行分析和展望.  相似文献   

3.
随着社交媒体多样性的增加,实时分析社交网络的需求不断增大,动态社区发现的研究受到了广泛的关注。已有的社区发现综述多是侧重静态社区发现,以及相关方法的探讨,无法进行网络演化分析,此外社区的实体数据往往具有交叉更替性和时序性,因此对动态社区发现的研究现状进行分析和综述。首先,基于复杂网络的研究背景,提出了通用的动态社区发现研究框架;接着,形式化表示动态社区发现的相关定义,并从网络层面和节点层面对动态社区演化进行详细分析;然后,根据架构和技术的不同,对动态社区发现方法进行归纳分类,并结合常用数据集和评价指标对经典静态社区发现算法进行定性和定量分析;最后,介绍了社区发现的典型应用场景,探讨了当前动态社区发现研究面临的主要挑战,针对性地提出了相关解决方案,为动态社区发现研究领域勾画出较为清晰和全面的研究方向。  相似文献   

4.
综述了近年来国内外对动态社区发现的主要研究进展。从同步、自旋和随机游动三个方面分析了动态社区发现算法的原理。对目前存在的各种动态社区发现算法进行了深入剖析和全面比较,指出当前动态社区发现的研究热点及将来需要重点关注的主要问题。  相似文献   

5.
复杂网络重叠社区结构的划分已成为复杂网络研究的一个热点,目前已提出了很多关于社区结构发现的算法。提出了一种基于个体从众的演化算法ICEA,基本思想是由节点邻居组成的个体依概率进行从众和变异操作,用较短时间找到最优(或拟最优)模块度的社区划分,社区结构确定后利用邻居投票机制NV发现网络的重叠节点,完成重叠社区的划分。在真实网络的实验结果表明,此算法的使用时间和划分结果都优于典型算法。  相似文献   

6.
近年来,随着现代网络通信和社会媒体等技术的飞速发展,复杂网络成为多学科交叉研究的热点之一,社区发现是复杂网络中的一个重要问题,对其进行研究具有重要的理论意义和应用价值。该问题吸引了多个学科领域的众多学者的关注,并且已有许多社区发现算法被提出。已有的社区发现综述多是侧重某一方向或特定领域展开,基于此,文中在之前工作的基础上,对国内外社区发现工作进行了深入调研,较全面地阐述了复杂网络社区发现的研究现状。首先,针对不同网络结构,给出社区发现的问题定义和主要的评价指标。然后,介绍了不同网络结构中的经典社区发现算法,包括同质网络中的全局社区发现、局部社区发现算法,异质网络中的二分网络、三分网络和多分网络中的社区发现,结合节点内容和连接结构的社区发现算法,以及动态网络中的社区发现和社区演化工作。最后,简要介绍了社区发现的典型应用,包括影响最大化、链路预测和情感分析领域的应用。此外,探讨了当前社区发现研究面临的主要挑战,试图为社区发现研究领域勾画一个较为清晰和全面的轮廓,为初学者提供指引。  相似文献   

7.
杨煜  段威威 《计算机应用》2023,(10):3129-3135
动态社区发现研究是社交网络分析(SNA)的重要研究领域。随着节点加入或离开社交网络,节点间的关系也随之建立或消失,进而影响着社区结构的变化。针对社交网络静态社区发现算法缺少必要的社区节点历史信息而导致的网络结构分析、聚类信息不足和计算开销过大的问题,基于社区网络演化事件的划分并根据主要社区事件的分析,提出一种基于谱聚类的动态社区发现算法(SC-DCDA)。首先,根据实验观察使用谱映射的方法将高维数据降维,并采用改进的模糊C-均值聚类(FCM)算法确定动态社交网络中的节点与待发现社区的关联度;其次,根据演化相似度矩阵分析社区结构。通过使用真实网络数据集以及模块度得分、轮廓系数等社区发现算法衡量指标,评估所提算法的效果。实验结果表明,SC-DCDA的计算开销相较于传统谱聚类降低了8.37%,在所有数据集上的平均模块度得分是0.49,其他衡量指标的定性分析结果也较好,验证了所提算法在信息交互、聚类效果和精确度上表现较好。  相似文献   

8.
蒋乐乐  刘厚泉  张楠 《计算机应用研究》2020,37(12):3599-3602,3617
现实生活中的网络通常是动态的,网络结构随着时间的推移而改变,检测社区演化可以深入了解网络的基本行为。针对动态社区演化预测问题,提出一种结合演化树和长短期记忆网络的社区演化预测方法,从动态网络中提取社区的多元特征,并使用长短期记忆网络对特征进行学习分类,最终预测社区下一时间段的变化情况。在两个真实数据集上进行了实验,实验结果证明该方法可以有效地预测社区演化行为,与其他方法相比具有较好的准确性。  相似文献   

9.
动态网络的社区发现是目前复杂网络分析领域的重要研究内容,然而现有动态网络社区发现方法主要针对同质网络,当网络包含多种异质信息时,现有方法不再适用。针对这个问题,本文提出了一个基于联合矩阵分解的动态异质网络社区发现方法,首先计算动态异质网路中各个快照图的拓扑相似度矩阵和多关系相似度矩阵,其次利用时序联合非负矩阵分解方法,约束各个时刻快照图的社区划分,最后在真实网络数据集上的实验结果表明,该算法可以有效检测出动态异质网络中潜在的社区结构。  相似文献   

10.
社区发现是当前复杂系统研究的前沿热点.本文提出了用于描述网络节点间依赖程度的关联度指标,能够有效描述社区节点向社区的聚集,提出了利用关联度进行社区挖掘的两阶段算法CDCDA.该算法首先采用局部扩张方法挖掘初始节点社区,对于初始社区外的独立结构(边缘稀疏结构、边缘聚集结构、中间稀疏结构和中间聚集结构),分别采用合并、分割合并的方式进行社区调整.真实网络的实验结果表明,算法不仅有较好的社区划分效果,而且能够发现社区中的微结构,并能够对社区给出更细致的分析.  相似文献   

11.
复杂社会网络演化过程研究对于发现社会网络群体的隐含结构和演化规律,以及风险预测具有重要意义。首先梳理了过程挖掘技术的发展脉络,阐述复杂社会网络分析方法与过程挖掘技术相结合在复杂社会网络演化模式研究、组织结构发现中的应用现状,结合社会网络分析方法和大数据技术,运用服务工程思想,进而从社会和资源维度综述社会网络跨组织业务过程发现、动态社会网络演化过程发现、角色挖掘与服务挖掘等技术,指出现有复杂社会网络过程挖掘研究面对大数据质量和跨组织异构等研究方面的不足,对大规模社会网络过程挖掘领域的研究难点和发展趋势进行了讨论。  相似文献   

12.
运用数据挖掘方法进行入侵检测已经成为网络安全领域的一个重要研究方向。提出一种动态聚类的数据挖掘方法进行异常入侵检测,该方法将不同用户行为的特征动态聚集,根据各个子的类支持度与预设的检测阈值比较来区分正常与异常。由于动态聚类算法在每次聚类过程中都检验归类的合理性,因此获得很好的聚类效果。实时检测试验得到了较高的检测率和较低的误报率。  相似文献   

13.
传统基于相邻时间片分析所获得的社区演化关系无法完备地刻画动态图社区演化的整个过程。为此提出了一种改进的社区演化关系分析方法。首先,定义社区事件,并根据发生的社区事件来描述社区的演化状态;然后,对两个不相同时间片内的社区进行事件匹配,从而获得社区演化关系;最后,通过实验将所提方法与传统方法进行比较。实验结果表明,所提方法发现的社区事件总数是传统方法的2倍以上,可为动态图社区演化过程的描述提供更丰富的信息。  相似文献   

14.
贝叶斯网络是目前人工智能中不确定知识与推理中最有效的理论模型之一。提出一种基于动态贝叶斯网络模型理论的水文预报方法。在综合考虑降雨径流成因的基础上,利用领域专家知识构建网络模型,在已有降雨、流量数据的基础上通过计算变量间的条件概率来计算流量发生的可能性。最后,通过渭河流域咸阳至临潼段历时数据进行仿真实验,对仿真结果和该模型进行了分析。  相似文献   

15.
Multivariate dynamic networks indicate networks whose topology structure and vertex attributes are evolving along time. They are common in multimedia applications. Anomaly detection is one of the essential tasks in analyzing these networks though it is not well addressed. In this paper, we combine a rare category detection method and visualization techniques to help users to identify and analyze anomalies in multivariate dynamic networks. We conclude features of rare categories and two types of anomalies of rare categories. Then we present a novel rare category detection method, called DIRAD, to detect rare category candidates with anomalies. We develop a prototype system called iNet, which integrates two major visualization components, including a glyph-based rare category identifier, which helps users to identify rare categories among detected substructures, a major view, which assists users to analyze and interpret the anomalies of rare categories in network topology and vertex attributes. Evaluations, including an algorithm performance evaluation, a case study, and a user study, are conducted to test the effectiveness of proposed methods.  相似文献   

16.
针对战术态势估计的特点和要求,分析和建立了应用于态势估计的动态贝叶斯网络模型。该模型以离散变量集为研究对象。由于该动态贝叶斯网络满足Markovian特性和平稳特性,降低了网络的复杂度。相比较于贝叶斯网络模型,该动态贝叶斯网络模型考虑了时序因素,将前时刻的态势因素作为当前时刻态势估计的证据的一部分,并能对下一时刻的态势进行预测。文中采用集树(junction tree)算法,利用相关的贝叶斯网络推理软件进行了实验,实验结果表明基于动态贝叶斯网络的估计结果较贝叶斯网络的估计结果好,验证了该模型的有效性。  相似文献   

17.
无线网络已经在各个行业中得到了广泛的应用,例如文件传输、数据共享等。常见的点对点(P2P)共享技术是通过有线网络来获取所需数据的,在无线网络上数据的共享传输则受到各种限制。为解决此问题,提出了基于动态内容路由的数据共享机制,通过比较无线网络中某段网络的特征权重带宽和跳数等来取得更有效的数据信息。  相似文献   

18.
异质网络将复杂系统中的信息抽象成不同类型的节点和链接关系,不同于同质网络,基于异质网络的社区发现能够挖掘出更加精确的社区结构。异质网络的社区发现通过对异质网络中的多维结构、多模信息、语义信息、链接关系等信息进行建模表示和提取分析,以发现其中相对紧密稳定的社区结构,对网络信息的获取与挖掘、信息推荐以及网络演化预测具有重要的研究价值。首先对社区发现当前研究的不足进行了简单阐述,接着引出了异质网络的定义;随后结合实例介绍了异质网络社区发现的现有研究方法,包括基于主题模型、基于排序和聚类相结合、基于数据重构和基于降维的方法等,并针对各类方法指出了其特点和局限性;最后讨论了当前该领域在结构复杂性、信息多样性、数据规模等方面面临的挑战。在将来,基于并行化、可扩展、动态增量的研究更能适应当前的变化环境。  相似文献   

19.
杨海陆  张健沛  杨静 《自动化学报》2014,40(10):2151-2162
本文探讨在线社会网络的社区识别问题, 重点研究网络演变特性对社区结构产生的影响. 首先基于节点的邻域倾向性提出社区稳定性的概念并给出稳定社区的快速识别算法, 然后设计了一种基于事件的社区稳定性校准算法以此识别新网络的社区结构. 由于算法的局部搜索策略, 该方法无需在新时间片段重复执行, 并且可以在无参数条件下识别加权网络中具有任意形状的社区结构. 在人工合成网络和真实网络上的实验结果验证了算法的可行性和有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号