首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the nonlinear free axisymmetric vibration of a thin circular functionally graded plate in thermal environment is formulated in terms of von-Karman's dynamic equations, and a semi-analytical approach is developed. The plate thickness is constant and the material properties of the functionally graded plate are assumed to vary continuously through the thickness, according to a power-law distribution of the volume fraction of the constituents. For harmonic vibrations, by using assumed-time-mode method and Kantorovich time averaging technique, governing equations are solved. The nonlinear frequencies and associated stresses are determined at large amplitudes of vibration. Effects of material compositions and thermal loads on the vibration characteristics and stresses are examined. The numerical results obtained here are compared with available published results, based on various approaches.  相似文献   

2.
This paper addresses the free vibration of multi-directional functionally graded circular and annular plates using a semianalytical/ numerical method, called state space-based differential quadrature method. Three-dimensional elasticity equations are derived for multi-directional functionally graded plates and a solution is given by the semi-analytical/numerical method. This method gives an analytical solution along the thickness direction, using a state space method and a numerical solution using differential quadrature method. Some numerical examples are presented to show the accuracy and convergence of the method. The most of simulations of the present study have been validated by the existing literature. The non-dimensional frequencies and corresponding displacements mode shapes are obtained. Then the influences of thickness ratio and graded indexes are demonstrated on the non-dimensional natural frequencies.  相似文献   

3.
Cutouts are inevitable in structures due to practical consideration.In order to investigate the free vibration of functionally graded plates with multiple circular and non-circular cutouts,finite eleme...  相似文献   

4.
This paper employs an analytical method to analyze vibration of piezoelectric coupled thick annular functionally graded plates (FGPs) subjected to different combinations of soft simply supported, hard simply supported and clamped boundary conditions at the inner and outer edges of the annular plate on the basis of the Reddy's third-order shear deformation theory (TSDT). The properties of host plate are graded in the thickness direction according to a volume fraction power-law distribution. The distribution of electric potential along the thickness direction in the piezoelectric layer is assumed as a sinusoidal function so that the Maxwell static electricity equation is approximately satisfied. The differential equations of motion are solved analytically for various boundary conditions of the plate. In this study closed-form expressions for characteristic equations, displacement components of the plate and electric potential are derived for the first time in the literature. The present analysis is validated by comparing results with those in the literature and then natural frequencies of the piezoelectric coupled annular FG plate are presented in tabular and graphical forms for different thickness-radius ratios, inner-outer radius ratios, thickness of piezoelectric, material of piezoelectric, power index and boundary conditions.  相似文献   

5.
Journal of Mechanical Science and Technology - The nonlinear dynamics of functionally graded graphene nanoplatelets (GPLs) reinforced composite plates are studied based on the first-order shear...  相似文献   

6.
An exact closed-form procedure is presented for free vibration analysis of moderately thick rectangular plates having two opposite edges simply supported (i.e. Lévy-type rectangular plates) based on the Reissner-Mindlin plate theory. The material properties change continuously through the thickness of the plate, which can vary according to a power law distribution of the volume fraction of the constituents. By introducing some new potential and auxiliary functions, the displacement fields are analytically obtained for this plate configuration. Several comparison studies with analytical and numerical techniques reported in literature are carried out to establish the high accuracy and reliability of the solutions. Comprehensive benchmark results for natural frequencies of the functionally graded (FG) rectangular plates with six different combinations of boundary conditions (i.e. SSSS-SSSC-SCSC-SCSF-SSSF-SFSF) are tabulated in dimensionless form for various values of aspect ratios, thickness to length ratios and the power law index. Due to the inherent features of the present exact closed-form solution, the present results will be a useful benchmark for evaluating the accuracy of other analytical and numerical methods, which will be developed by researchers in the future.  相似文献   

7.
The nonlinear response of functionally graded ceramic-metal shell panels under mechanical and thermal loading is studied. The nonlinear formulation is based on a modified version of Sander's nonlinear shell theory, in which the geometric nonlinearity takes the form of von Kármán strains. It is assumed that the material properties vary through the thickness according to a power-law distribution of the volume fraction of the constituents. The displacement field is expressed in terms of a set of mesh-free kernel particle functions. The bending stiffness is evaluated using a stabilized conforming nodal integration technique, and the shear and membrane terms are computed using a direct nodal integration to eliminate shear and membrane locking. The arc-length method, combined with the modified Newton-Raphson approach, is employed to trace the full load-displacement path. The characteristic of the displacement and the axial stress in panels under thermal and mechanical loading is investigated, and the effects of the volume fraction exponent, boundary conditions, and material properties on the nonlinear response of shell panels are also examined.  相似文献   

8.

The nonlinear vibration response of a functionally graded materials (FGMs) truncated conical shell with piezoelectric layers is analyzed. The vibration amplitude is suppressed by the positive and inverse piezoelectric effects. And the bifurcation phenomenon is described to reveal the motion state of the conical shell. Firstly, a truncated conical shell composed of three layers is described. And the effective material properties of the FG layer are defined by the Voigt model and the power law distribution. Next, the electric potentials of piezoelectric layers are defined as cosine distribution along the thickness direction. Meanwhile, the constant gain negative velocity feedback algorithm is used to suppress the vibration amplitude by the electric potential produced by the sensor layer. Thereafter, considering the first-order shear deformation theory and the von Karman nonlinearity, the relationship between the strain and displacement is defined. And the corresponding energy of the conical shell is calculated. After that, the motion equations of the conical shell are derived based on the Hamilton principle. Again, the nonlinear single degree of freedom equation is derived by the Galerkin method and the static condensation method. In the end, the nonlinear vibration response of FGMs truncated conical shell with piezoelectric layers under the external excitation is analyzed via using the harmonic balance method and the Runge-Kutta method. The effects of various parameters, such as ceramic volume fraction exponent, external excitation’s amplitude, control gain and geometric parameters on the nonlinear vibration response of the system are evaluated by case studies. Results indicate that the control gain plays an important role on the suppression of the vibration amplitude. The ceramic volume fraction exponents are not sensitive to the nonlinear vibration response compared with other parameters. The bifurcation behavior is observed under different parameters. The FGMs truncated conical shell with piezoelectric layers has three types of motion state, such as periodic motion, multi-periodic motion, and chaos motion.

  相似文献   

9.
Nonlinear bending analysis is presented for a simply supported, functionally graded rectangular plate subjected to a transverse uniform or sinusoidal load and in thermal environments. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The governing equations of a functionally graded plate are based on Reddy's higher-order shear deformation plate theory that includes thermal effects. Two cases of the in-plane boundary conditions are considered. A mixed Galerkin-perturbation technique is employed to determine the load-deflection and load-bending moment curves. The numerical illustrations concern nonlinear bending response of functional graded rectangular plates with two constituent materials. The influences played by temperature rise, the character of in-plane boundary conditions, transverse shear deformation, plate aspect ratio and volume fraction distributions are studied.  相似文献   

10.
This paper describes a study of three-dimensional free vibration analysis of thick circular and annular isotropic and functionally graded (FG) plates with variable thickness along the radial direction, resting on Pasternak foundation. The formulation is based on the linear, small strain and exact elasticity theory. Plates with different boundary conditions are considered and the material properties of the FG plate are assumed to vary continuously through the thickness according to power law. The kinematic and the potential energy of the plate-foundation system are formulated and the polynomial-Ritz method is used to solve the eigenvalue problem. Convergence and comparison studies are done to demonstrate the correctness and accuracy of the present method. With respect to geometric parameters, elastic coefficients of foundation and different boundary conditions some new results are reported which may be used as benchmark solutions for future researches.  相似文献   

11.
In this paper, thermal buckling analysis is performed on hybrid functionally graded plates (FGPs) with an arbitrary initial stress. The governing equations are derived using the average stress method, including the effect of transverse shear deformation. Then, an eigenvalue problem is formed to evaluate thermal buckling temperatures for simple supported initially stressed ceramic-FGM-metal plates. The effects of functionally graded material (FGM) layer thickness, volume fraction index, layer thickness ratio, thickness ratio, aspect ratio and initial stress on the thermal buckling temperature of hybrid FGPs are investigated. The results reveal that the volume fraction index, initial stresses and FGM layer thickness have significant influence on the thermal buckling of hybrid FGPs.  相似文献   

12.
Journal of Mechanical Science and Technology - Metal-ceramic functionally graded materials (FGMs) have attracted much attention in the recent years thanks to their excellent properties. Accordingly...  相似文献   

13.
This paper presents a semi-analytical approach for the geometrically nonlinear analysis of skew and trapezoidal plates subjected to out-of-plane loads. The thin elastic plate theory with nonlinear von Kármán strains is used for the nonlinear large deflection analysis of the plate. The solution of the governing nonlinear partial differential equations with variable coefficients is reduced to an iterative solution of nonlinear ordinary differential equations using the multi-term extended Kantorovich method. The geometry of the trapezoidal plate is mapped into a rectangular computational domain. Parallelogram (skew) plates are considered as a particular case of the general trapezoidal ones. The capabilities and convergence of the method are numerically examined through comparison with other semi-analytical and numerical methods and with finite element analyses. The applicability of the approach to the nonlinear large deflection analysis of skew and trapezoidal plates is demonstrated through various numerical examples. The numerical study focuses on combinations of geometry, loading and boundary conditions that are beyond the applicability of other semi-analytical methods.  相似文献   

14.
The static response and free vibration of metal and ceramic functionally graded shells are analyzed using the element-free kp-Ritz method. The material properties are assumed to vary continuously along the depth direction. The displacement field is expressed in terms of a set of mesh-free kernel particle functions according to Sander's first-order shear deformation shell theory. The effects of the volume fraction, material property, boundary condition, and length-to-thickness ratio on the shell deflection, axial stress, and natural frequency are examined in detail. Convergence studies of node numbers are performed to verify the effectiveness of the proposed method. Comparisons reveal that the numerical results obtained from the proposed method agree well with those from the classical and finite element methods.  相似文献   

15.

This paper presents a numerical method for simulating the crack propagation in functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates. The numerical method is based on 2-D natural element method (NEM) which can overcome the inherent demerits of FEM and conventional meshfree methods. The 3-D displacement field of cracked orthotropic plate is formulated using the (1, 1, 0)* hierarchical model and approximated by 2-D NEM. The thickness-wise mixed-mode stress intensity factors (SIFs) are computed using the modified interaction integral I(1,2) and the 2-D complex-valued crack-tip singular fields. The crack propagation angle is determined by the modified maximum circumferential stress (MCS) criterion, and the crack trajectories are predicted by an incremental crack propagation simulation scheme. The present numerical method is verified from the comparison of predicted crack trajectories with the published reference solutions. Moreover, using the developed numerical method, the crack trajectory characteristics of FG-CNTRC plates are parametrically investigated with respect to the major parameters. From the parametric investigation, it is found that the crack trajectories of FG-CNTRC are significantly influenced by the material orientation angle and the stiffness ratio. But, the effects of the initial crack angle and the volume fraction and volume fraction pattern of CNTs are not remarkable.

  相似文献   

16.
Second-order shear deformation theory (SSDT) is employed to analyze vibration of temperature-dependent solar functionally graded plates (SFGP’s). Power law material properties and linear steady-state thermal loads are assumed to be graded along the thickness. Two different types of SFGP’s such as ZrO2/Ti-6Al-4V and Si3N4/SUS304 are considered. Uniform, linear, nonlinear, heat-flux and sinusoidal thermal conditions are imposed at the upper and lower surface for simply supported SFGPs. The energy method is applied to derive equilibrium equations, and solution is based on Fourier series that satisfy the boundary conditions (Navier’s method). Non-dimensional results are compared for temperature-dependent and temperature-independent SFGP’s and validated with known results in the literature. Numerical results indicate the effect of material composition, plate geometry, and temperature fields on the vibration characteristics and mode shapes. The results obtained using the SSDT are very close to results from other shear deformation theories.  相似文献   

17.
In this paper we present a new application for a four variable refined plate theory to analyse the nonlinear cylindrical bending behavior of functionally graded plates subjected to thermomechanical loadings. This recent theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The material properties are assumed to vary continuously through the thickness of the plate according to a power-law distribution of the volume fraction of the constituents. The non-linear strain-displacement relations in the von Karman sense are used to study the effect of geometric non-linearity. The solutions are achieved by minimizing the total potential energy and the results are compared to the classical and the first-order theories reported in the literature. It can be concluded that the proposed theory is accurate and simple in solving the nonlinear cylindrical bending behavior of functionally graded plates.  相似文献   

18.
We present the thermal buckling analysis of functionally graded rectangular plates subjected to partial heating in a plane and uniform temperature rise through its thickness. The plate is simply supported for out-of-plane deformation and perfectly clamped for in-plane deformation. It is assumed that the functionally graded material properties such as the coefficient of linear thermal expansion and Young's modulus are changed individually in the thickness direction of the plate with the power law, while Poisson's ratio is assumed to be constant. Analytical developments consist of two stages. First, the nonuniform in-plane resultant forces are determined by solving a plane thermoelastic problem. Then the critical buckling temperatures of the plates with the predetermined resultant forces are calculated as the generalized eigenvalue problem which is constructed by using the Galerkin method. Finally, the effects of material inhomogeneity, aspect ratio, and heated region on the critical buckling temperatures are examined.  相似文献   

19.

This paper is concerned with the thermoelastic analysis of functionally graded (FG) sandwich plates with a homogeneous core by a numerical method. The core layer is homogeneous ceramic while two facesheets are inhomogeneous metal-ceramic FGMs having the power-law volume fractions. The metal-ceramic FG sandwich plates are characterized by the relative thicknesses of three layers, the width-thickness and aspect ratios of plate, and the volume fractions of metal and ceramic. Meanwhile, the problem is formulated using the hierarchical models exhibiting the spectral model accuracy and implemented by 2-D natural element method (NEM). The hierarchical models are based upon the 3-D elasticity and NEM is applied to the mid-surface of plate to approximate the triple-vectored in-plane displacement field. The accuracy of hierarchical models are examined with respect to the model order, from which the (3, 3, 4) hierarchical model is chosen for the thermoelastic analysis. The thermoelastic responses obtained by the present method are compared with the existing analytic solutions, and those are parametrically investigated with respect to the above-mentioned design parameters. It is found that the present method shows a reasonable accuracy and the thermoelastic responses of FG sandwich plates are remarkably influenced by the design parameters.

  相似文献   

20.
Journal of Mechanical Science and Technology - A simple and effective approach based on refined plate theory (RPT) is proposed to study the static and free vibration characteristics of functionally...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号