首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 2003, a subsurface flow constructed wetlands (SSF-CW) system was built at the University of Vermont (UVM) Paul Miller Dairy Farm as an alternative nutrient management approach for treating barnyard runoff and milk parlour waste. Given the increasing problem of phosphorus (P) pollution in the Lake Champlain region, a slag based P-removal filter technology (PFT) was established (2004) at the CW with two objectives: (i) to test the filters' efficiency as an upgrade unit for improving P removal performance via SSF-CW (ii) to investigate the capacity of filters technology to remove P as a "stand alone" unit. Six individual filters (F1-F6) were filled with electric arc furnace (EAF) steel slag, each containing 112.5 kg of material with a pore volume of 21 L. F1-F4, fed with CW treated water, received approximately 2.17 g DRP kg(-1) EAF steel slag (0.25 kg DRP total) during the 259 day feeding period. F1-F4 retained 1.7 g DRP kg(-1) EAF steel slag, resulting in an average P removal efficiency of 75%. The addition of filters improved CW DRP removal efficiency by 74%. F5 and F6, fed non-treated water, received 1.9 g DRP kg(-1) EAF steel slag (0.22 kg DRP in total) and retained 1.5 g DRP kg(-1) resulting in a P removal efficiency of 72%. The establishment of the EAF slag based PFT is the first in-field evaluation of this technology to reduce P from dairy farm effluent in Vermont.  相似文献   

2.
'Active' filters for upgrading phosphorus removal from pond systems.   总被引:2,自引:0,他引:2  
This paper investigates limestone and iron slag filters as an upgrade option for phosphorus removal from wastewater treatment ponds. A review of 'active' filter technology and the results from laboratory and field research using packed columns of the different media is presented. It is shown that both limestone and iron slag can remove phosphorus but highlights that different types of limestone give markedly different performance. Filter performance appears to be improved by increasing temperature and by the presence of algae, presumably because of its tendency to elevate pH. Performance is related to hydraulic retention time (HRT), but this relationship is not linear, particularly at low HRTs. Importantly for future research, the results from field-testing with pond effluent show significant differences compared to those obtained when using a synthetic feed in the laboratory. For the iron slag filter, higher performance was observed in the field (72% in field vs. 27% in laboratory, at a 12 hour-HRT), while the opposite was observed for the limestone (64% in laboratory vs. 18% in field, at a 12-hour HRT).  相似文献   

3.
The efficacy of using constructed wetlands (CWs) to sequester organic carbon and nutrients from irrigation tailwaters was studied in the San Joaquin Valley, California. Two CWs were monitored during the 2004 irrigation season, a new CW (W-1) and 10-year-old CW (W-2). Input/output waters from CW were collected weekly and analyzed for a variety of water quality contaminants. Organic carbon, nutrient and sediment retention efficiencies were evaluated from input/output concentrations. Characteristics of sediment were examined spatially at W-2. Results indicate that W-2 was more efficient at contaminant removal. Average particulate organic carbon retention, was 70+/-13% (mean +/-standard deviation) in W-2 and 48+/-32% in W-1. Chlorophyll-a, a measure of algal biomass, was higher at W-1, especially in input waters. Initially, output concentration of chlorophyll-a increased 15-fold in W-2, however over time, as emergent vegetation established, chlorophyll-a decreased to 35% of input levels. Average total N removal efficiency was 45 +/-18% for W-2 compared to 22 +/-32% in W-1. Total P removal efficiency was 72+/-14% at W-2 compared to 18+/-26% at W-1. CWs were most effective at removing total suspended solids, 84 +/-15% and 97+/-2% for W-1 and W-2, respectively. Results demonstrate that CWs are effective at capturing POC, sediment and nutrients from irrigation tailwaters.  相似文献   

4.
In this paper the nitrogen elimination rates of different constructed wetland (CW) designs reported in literature are compared with those obtained for outdoor and indoor 2-stage vertical flow (VF) systems. The outdoor system is located about 150 km west of Vienna. Both stages are planted with Phragmites australis and the system has been operated for 4 years continuously. During this period the average value of the nitrogen elimination rate was 3.30 g N m(-2) d(-1). The indoor system comprises three parallel operated 2-stage VF systems and is located in the technical lab hall at BOKU University. The design of the indoor system resembles the outdoor system. However, there are a few differences: (1) the indoor systems are not planted, and (2) different filter media have been used for the main layer of the first stages. With the indoor system the highest nitrogen elimination rate achieved was 2.24 g N m(-2) d(-1) for the system with zeolite and impounded drainage layer. Similar results have been found in France for treating raw wastewater with VF and horizontal flow (HF) beds in series with nitrogen elimination rates of 1.89 and 2.82 g N m(-2) d(-1) for differently designed HF beds. The highest nitrogen elimination rates of 15.9 g N m(-2) d(-1) reported were for pilot-scale VF CWs treating high-strength synthetic wastewater (total nitrogen of 305 mg L(-1) in the influent) in Thailand. It has been shown that the outdoor two-stage VF CW system has one of the highest nitrogen elimination rates of CWs treating domestic wastewater.  相似文献   

5.
Constructed wetlands (CWs) have been used to treat agricultural effluents with varying success especially with respect to their operational efficiency in winter and ability to retain phosphorus. Dirty water (DW) from dairy farms is a mixture of manure contaminated runoff and milk parlour washings with a highly polluting biochemical oxygen demand (BOD) < or =3000 mg/L. The initial performance a CW of a 1.2 ha horizontal flow CW consisting of five ponds in series designed to treat DW from a dairy unit was assessed over four years. Ponds were earth-lined and shallow (0.3 m) with a water residence time of 100 days and planted with five species of emergent macrophytes. In comparison to CW inflow, annual reductions were as follows: BOD 99%, P 95% and N 92.8%. Coliforms were reduced by a 10(-5) factor to natural levels. From May to October there was little CW discharge due to evaporative losses. Final effluent quality was poorest in February but remained within a regulatory effluent standard for BOD of 40 mg/L. If the CW had only four ponds (25% less surface area) effluent would have failed the BOD standard in three years.  相似文献   

6.
We measured N2O, CH4 and CO2 fluxes in horizontal and vertical flow constructed wetlands (CW) and in a riparian alder stand in southern Estonia using the closed chamber method in the period from October 2001 to November 2003. The average rates of N20, CH4 and CO2 emission from the riparian gray alder stand were from -0.4 to 58 microg N2O-N m(-2) h(-1) and 0.1-265 microg CH4-C m(-2) h(-1), 55-61 mg CO2-C m(-2) h(-1), respectively. The average N2O-N emission from the microsites above the inflow pipes of horizontal subsurface flow (HSSF) CWs was 6.4-31 microg N2O-N m(-2) h(-1), whereas the outflow microsites emitted 2.4-8 microg N2O-N m(-2) h(-1). In vertical subsurface flow (VSSF) beds the same value was 35.6-44.7 microg N2O-N m(-2) h(-1). The average CH4 emission from the inflow and outflow microsites in the HSSF CWs differed significantly ranging from 640 to 9715 and from 30 to 770 microg CH4-C m(-2) h(-1), respectively. The average CO2 emission was somewhat higher in VSSF beds (140-291 mg CO2-C m(-2) h(-1)) and at inflow microsites of HSSF beds (61-140 mg CO2-C m(-2) h(-1)). The global warming potential (GWP) from N2O and CH4 was comparatively high in both types of CWs (4.8 +/- 9.8 and 6.8 +/- 16.2 t CO2 eq ha(-1) a(-1) in the HSSF CW 6.5 +/- 13.0 and 5.3 +/- 24.7 t CO2 eq ha(-1) a(-1) in the hybrid CW, respectively). The GWP of riparian alder forest from both N2O and CH4 was relatively low (0.4 +/- 1.0 and 0.1 +/- 0.30 t CO2 eq ha(-1) a(-1), respectively), whereas the CO2-C flux was remarkable (3.5 +/- 3.7 t ha(-1) a(-1). The global influence of CWs is not significant. Even if all the global domestic wastewater were treated by wetlands, their share in the trace gas emission budget would be less than 1%.  相似文献   

7.
Gravel constitutes the filter medium in subsurface flow constructed wetlands (SSF CWs) and its porosity and hydraulic conductivity decrease over time (clogging), limiting the lifespan of the systems. Using gravel of poor quality accelerates clogging in wetlands. In this study, gravel samples from six different wetland systems were compared with regards to their mineral composition and mechanical resistance properties. Results showed that both mineralogy and texture are related to mechanical resistance. Accordingly, gravel with high content of quartz (> 80%) showed a lower percentage of broken particles (0.18-1.03%) than those with lower content of quartz (2.42-4.56% media broken). Although granite is formed by high durability minerals, its non-uniform texture results in a lower resistance to abrasion (ca. 10% less resistance than calcareous gravel). Therefore, it is recommended to use gravels composed mainly of quartz or, when it is not available, limestone gravels (rounded and uniform) are recommended instead. The resistance to abrasion (LAA test) seems to be a good indicator to determine the mechanical properties of gravels used in CWs. It is recommended to use gravels with LAA below 30% in order to avoid a rapid clogging due to gravel crumbling and subsequent mineral solids accumulation.  相似文献   

8.
Constructed wetlands (CWs) are well recognized as having low construction and maintenance cost and low energy requirement. However, CW design has been mainly based on rule-of-thumb approaches. In this study, the efficiency of a modular horizontal subsurface flow (HSSF) CW using four different design schemes was investigated. Based on the results, the four systems have attained more than 90% removal of total suspended solids and more than 50% removal efficiency for total phosphorus, PO(4)-P and Zn. The planted system achieved higher pollutant removal rates than the unplanted system. In terms of media, bottom ash was more effective than woodchip in reducing the pollutants. Considering the flow length, optimum removal efficiency was achieved after passing the sedimentation tank and vertical media layer; with respect to depth, more pollutants were removed in the upper sand layer than in the lower gravel layer. This study recommended a surface area of 0.25 to 0.8% of catchment area for planted CW and 0.26 to 0.9% for unplanted CW using the 7.5 to 10 mm design rainfall.  相似文献   

9.
Building wetlands in small arable streams is a popular supplement to best management practice on arable fields. Particle bound phosphorus settles in the small constructed wetlands (CWs), receiving agricultural diffuse pollution. The sorption behavior of phosphorus is, however, redox-sensitive, and bound phosphorus may be remobilized in periods with low redox potential. This paper investigates changes in the redox potential in the free water of wetland Berg (Norway) during a three-year period, and how these redox changes affect the total phosphorus (TP) and total reactive phosphorus (TRP) retention. Despite eutrophic conditions in the wetland, the redox potential was never negative, and usually higher than 400 mV, indicating aerobic conditions. The relative retention was 440% and 43% for TP and TRP, respectively. The specific retention was 100 g TP and 43 g TRPm(-2) yr(-1). Loss of phosphorus was only observed during less than 19% of the total period of time. The net loss was less than 5% of the specific retention. The high positive redox potential probably conserves the redox-sensitive phosphorus in the wetland sediment as long as water fows through the CW.  相似文献   

10.
There are now more than 1,000 constructed wetland systems (CWs) in the UK. The first UK CW database was constructed by Water Research Centre (WRc) and Severn Trent Water Ltd to accompany a book on the design and performance of these systems. In that database, constructed by Gareth Job et al., only 154 beds were listed, most of which were tertiary sewage treatment sites in Severn Trent Water. The Constructed Wetland Association (CWA) was formed in 2000 as a UK water industry body in response to problems caused by unscrupulous constructors. A group of experienced, reputable designers and constructors formed the CWA to bring together best UK practice in order to counteract this problem. The group contains major water companies, designers, constructors, academics, plant growers and operators. They decided that one of the best ways of countering the problem was to assemble a database of design and performance from well-designed systems. After negotiation the CWA group took over responsibility for the database from WRc. The CWA has produced eight updates of the database which now contains information from more than 900 beds. It contains examples of the different variants of CWs in use in the UK. Most of these sites treat sewage/domestic wastewater but the database also includes examples of systems for the treatment of minewater, sludge, landfill leachate, industrial effluents, surface runoff and road runoff. Particular treatment applications are illustrated by case studies which are summary articles describing design, construction and performance.  相似文献   

11.
In this study we investigated total and hexavalent chromium removal in an h-SSF constructed wetland (CW) planted with Phragmites australis and operating as post-treatment of effluent wastewater from an activated sludge plant serving the textile industrial district of Prato (Italy). Two measurement campaigns were carried out in 2006 and 2008-2010 in which more than 950 inlet and outlet samples were analyzed. When inlet and outlet concentrations were compared one to the other, the latter were found to be significantly lower than the former (p < 0.001); during the entire period of investigation, removal of hexavalent chromium equal to about 70% was achieved. Outlet concentrations ranged between values lower than the quantification limit (0.5 microg L(-1)) and 4.5 microg L(-1), and in all cases were therefore lower than the limit indicated for hexavalent chromium in the Italian regulation for water reuse (5 microg L(-1)). The comparison of the removal efficiencies achieved for hexavalent and trivalent chromium during the two campaigns suggested that the removal of the former can be sustained in the long term, while for the latter, the treatment efficiency is more sensitive to the age of the CW, being that it is it based on trivalent chromium retention in the reed bed.  相似文献   

12.
This paper describes a two-year performance evaluation of four different constructed wetland (CW) treatment systems designed by IRIDRA Srl, located in central Italy. All four CW systems were established to treat wastewater effluent from different tourist activities: (1) one single-stage CW for secondary treatment of domestic wastewater (30 p.e.) at a holiday farm site; (2) a hybrid compact system consisting of two stages, a horizontal flow (HF) system followed by a vertical flow (VF) system for the secondary treatment of effluent from a 140 p.e. tourist resort; (3) a single-stage vertical flow (VF) CW for a 100 p.e. mountain shelter; and (4) a pair of single-stage, HF CWs for the secondary treatment of segregated grey and black water produced by an 80 p.e. camping site. These tourism facilities are located in remote areas and share some common characteristics concerning their water management: they have high variability of water consumption and wastewater flow, depending on the season, weather and weekly regularities; they have no connection to a public sewer and most sites are located in a sensitive environment. Total suspended solids (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), ammonium (N-NH4+), nitrate (N-NOx), total nitrogen (Ntot), total phosphorus (Ptot), total coliform (TC), faecal coliform (FC), E. coli removal efficiencies for all four CW systems are presented. The results from this study demonstrate the potential of CWs as a suitable technology for treating wastewater from tourism facilities in remote areas. A very efficient COD reduction (83-95%) and pathogen elimination (3-5 logs) have been achieved. Furthermore, the CWs are easily maintained, robust (not sensitive to peak flows), constructed with local materials, and operate with relatively low cost.  相似文献   

13.
This work focuses on the performance evaluation of two full-scale horizontal suburface flow constructed wetlands (H-SSF CWs) working in parallel, which have an almost equal surface area (about 2,000 m2) but with different operational lives: 8 and 3 years. Both H-SSF CWs, located in Southern Italy (Sicily), are used for tertiary treatment of the effluent of a conventional wastewater treatment plant. This study evaluates and compares H-SSF CW efficiency both in terms of water quality improvement (removal percentage) and achievement of Italian wastewater discharge and irrigation reuse limits. The mean removal percentage, for the overall operational life, of TSS, COD and BOD (80%, 63%, 58% obtained for H-SSF1 and 67%, 38%, 41% for H-SSF2), confirm the high reliability of CWs for wastewater treatment. However, despite the satisfactory removal of microbial indicators (the mean E. coli removal was up to 2.5 log unit for both beds), CWs didn't achieve the Italian limits for wastewater reuse. Information on hydraulic properties of the CWs were extracted from breakthrough curves of a non-reactive tracer (NaCl). By comparing the nominal (tau(n)) and actual residence time (tau), hydraulic behaviour was revealed.  相似文献   

14.
Experiments were conducted to investigate the feasibility of applying constructed wetlands (CW) to treat a sanitary landfill leachate containing high nitrogen (TN) and bacterial contents. Under the tropical conditions (temperature of about 30 degres C), the CW units operating at a hydraulic retention time (HRT) of 8 days yielded the best treatment efficiencies with BOD5 removal of 91%, TN removal of 96%, total and fecal coliforms (TC and FC) removal of more than 99%. Cadmium removal in the in the SFCW bed was found to be 99.7%. Mass balance analysis, based on TN contents of the plant biomass and dissolved oxygen (DO) and oxidation - reduction potential (ORP) values, suggested that 88% of the input TN were uptaken by the plant biomass. Fluorescence in situ hybridization (FISH) results revealed the predominance of bacteria including the heterotrophic and autotrophic bacteria responsible for BOD5 removal. Nitrifying bacteria was not found to be present in the SSFCW beds.  相似文献   

15.
The treatment performance of a maturation pond (MP), the typical final polishing stage of an Advanced Pond System (APS), is compared with that of a surface-flow constructed wetland (CW) over 19 months. Both received approximately 67 mm d-1 of wastewater after passage through upstream stages of the APS. The MP, with greater sunlight exposure, had higher algal biomass (and associated suspended solids) than the CW, showed higher dissolved oxygen (DO) concentrations and greater diurnal variation in DO and pH. Neither polishing stages reduced nutrients markedly, with the CW exporting slightly more NH(3)-N and DRP, and less NO(3)-N than the MP. Disinfection was more efficient in the MP (geometric mean 1 log load removal, 12 MPN (100ml)-1) compared to the CW (0.47 log load removal, 53 MPN (100ml)-1). Incorporation of a final rock filter (28% of area) reduced median solids levels to < 10 g m(-3) in both the MP and CW. A hybrid between MPs and CWs with alternating zones of open-water (for enhanced disinfection and zooplankton grazing of algal solids) and wetland vegetation (promoting sedimentation and denitrification, and providing refugia for zooplankton) may provide more consistent effluent quality that either stage alone.  相似文献   

16.
The decimal elimination capacity (DEC) of slow sand filters (SSF) for viruses, bacteria and oocysts of Cryptosporidium has been assessed from full-scale data and pilot plant and laboratory experiments. DEC for viruses calculated from experimental data with MS2-bacteriophages in the pilot plant filters was 1.5-2 log10. E. coli and thermotolerant coliforms (Coli44) were removed at full-scale and in the pilot plant with 2-3 log10. At full-scale, Campylobacter bacteria removal was 1 log10 more than removal of Coli44, which indicated that Coli44 was a conservative surrogate for these pathogenic bacteria. Laboratory experiments with sand columns showed 2-3 and >5-6 log10 removal of spiked spores of sulphite-reducing clostridia (SSRC; C. perfringens) and oocysts of Cryptosporidium respectively. Consequently, SSRC was not a good surrogate to quantify oocyst removal by SSF. Removal of indigenous SSRC by full-scale filters was less efficient than observed in the laboratory columns, probably due to continuous loading of these filter beds with spores, accumulation and retarded transport. It remains to be investigated if this also applies to oocyst removal by SSF. The results additionally showed that the schmutzdecke and accumulation of (in)organic charged compounds in the sand increased the elimination of microorganisms. Removal of the schmutzdecke reduced DEC for bacteria by +/-2 log10, but did not affect removal of phages. This clearly indicated that, besides biological activity, both straining and adsorption were important removal mechanisms in the filter bed for microorganisms larger than viruses.  相似文献   

17.
Stormwater filters are widely used in stormwater management, sometimes as standalone structures (e.g. stormwater filter beds), or as part of porous pavements, soak ways, infiltration basins and trenches. Due to the high levels of sediment present in stormwater, clogging is the main operational issue for these systems. A laboratory-based study was conducted to investigate the effect of filter bed design variables on the clogging phenomenon in non-vegetated stormwater filters with high infiltration rates. Design parameters studied include: filter media particle sizes (0.5 mm, 2 mm, 5 mm); depth of the filter bed (100 mm, 300 mm and 500 mm); and filter media packing configurations (layered or mixed). The size of filter media particles significantly impact the clogging process, as well as the overall sediment removal performance of the filters; filters with smaller particles had better sediment removal efficiency, but subsequently shorter lifespan. Deeper systems had longer lifespan compared with shallower ones, notwithstanding deeper systems removed more sediment over their life span. Having two layers of distinct sized media in the filter bed improved performance (e.g. volume of water treated; sediment removed) over the single-layered systems. However, the three-layered systems behaved similarly to two-layered systems. Mixed systems also showed improved performance, as compared with single-layered systems, and were similar to the three-layered systems. This study therefore suggests that simple modifications to a stormwater filtration system can help improve sediment removal performance and/or reduce maintenance intervals significantly, while only slightly affecting sediment removal performance.  相似文献   

18.
Constructed wetlands (CWs) treat municipal wastewater through the retention of nutrients and particles. The retention of nitrogen (N) was studied in the laboratory using columns and meso-scale trenches filled with shellsand and light-weight aggregates (LWA). The objective was to examine whether measuring the natural abundance of delta15N in NO3(-) could be used to estimate the relative contribution of denitrification to the total NO3(-) removal in these treatment systems. In both the columns and the trenches it was seen that denitrification was more efficient in shellsand and LWA collected from on-site treatment systems compared to new LWA. This was due to the high pH value (about 10) of new LWA. The enrichment factors (epsilon) from the column study were in general lower than values found in laboratory tests of isotope discrimination in denitrification, but similar to epsilon values found for denitrification in groundwater systems. No enrichment factors could be found for the trench study due to simultaneous denitrification and nitrification and inhomogeneous N transformation patterns. When NH4+ was partially nitrified in the upper parts of the trench, this diluted the 15N enrichment of NO3(-) due to denitrification. Thus, in systems with high NH4+ concentrations and partial aerobic conditions, the method of natural abundance is not suitable for estimating the relative contribution of denitrification to the total NO3(-) removal.  相似文献   

19.
There is a need for a simplified computer-based design tool for subsurface flow constructed wetlands (CWs) which is based on process-based numerical models. Parameters of existing design guidelines and rules have been derived from experiments under specific conditions. Therefore designing CWs using these parameters is limited to these conditions (i.e., temperature, wastewater composition, filter material, etc.). Process-based numerical models describe the main processes in CWs in detail. If the design of CWs is based on these models it will be possible to design CWs for a variety of different boundary conditions and therefore the main limitation of existing design guidelines and rules could be overcome. The use of process-based models is currently limited mainly due to their complexity in structure and use. To make numerical modelling a useful and applicable tool for design, a simplified computer-based design tool that does not require special knowledge of numerical modelling is needed. Additionally, simple models for pre- and post-treatments are also required. Besides allowing designs for various boundary conditions, design tools based on process-based models can also predict the dynamic behaviour of the designed system thus showing e.g., the higher robustness of CWs against fluctuating inflows and peak loads compared to other treatment solutions. Such a tool could increase the quality of CW design and the acceptance and use of CW simulation in practice.  相似文献   

20.
Constructed wetlands (CWs) have proved to be a highly effective measure to reduce the ecological impact of combined sewer overflows (CSOs) on receiving waters. Due to the stochastic nature of the loading regime and the multitude of environmental influences, assessment of the performance of such plants requires detailed mathematical modelling. A multi-component reactive transport module (CW2D) was applied to simulate the flow, transport and degradation processes occurring in a CW for CSO treatment. CW2D was originally developed to simulate the treatment of municipal wastewater in subsurface flow CWs. Loading and operational conditions in CSO treatment differ fundamentally from the conditions occurring for wastewater treatment. Despite these differences, first results from the simulation of lab-scale experiments show, that the model is generally applicable to this type of plant. Modelling of adsorption, degradation processes, and influent fractionation, however, require further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号