首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adaptive MIMO antenna selection via discrete stochastic optimization   总被引:1,自引:0,他引:1  
Recently it has been shown that it is possible to improve the performance of multiple-input multiple-output (MIMO) systems by employing a larger number of antennas than actually used and selecting the optimal subset based on the channel state information. Existing antenna selection algorithms assume perfect channel knowledge and optimize criteria such as Shannon capacity or various bounds on error rate. This paper examines MIMO antenna selection algorithms where the set of possible solutions is large and only a noisy estimate of the channel is available. In the same spirit as traditional adaptive filtering algorithms, we propose simulation based discrete stochastic optimization algorithms to adaptively select a better antenna subset using criteria such as maximum mutual information, bounds on error rate, etc. These discrete stochastic approximation algorithms are ideally suited to minimize the error rate since computing a closed form expression for the error rate is intractable. We also consider scenarios of time-varying channels for which the antenna selection algorithms can track the time-varying optimal antenna configuration. We present several numerical examples to show the fast convergence of these algorithms under various performance criteria, and also demonstrate their tracking capabilities.  相似文献   

2.
针对平坦相关瑞利衰落信道环境下的端到端大规模MIMO系统复杂度过高的问题,提出一种基于离散布谷鸟搜索的低复杂度双层分组天线选择算法。该算法首先基于天线信道相关性对大规模天线阵列进行分组处理,进而利用新型双层算法对分组的天线集合进行优化天线选择。其中,新型双层算法的第一层是每小组天线基于离散布谷鸟搜索的内部选择,第二层是对第一层选择的所有天线利用离散布谷鸟搜索进行最终的选择。提出的新型天线选择算法可有效降低大规模MIMO系统复杂度。仿真结果验证了在平坦相关瑞利衰落信道环境下,提出的天线选择算法能够以较低选择复杂度获得接近最优选择方法的容量性能和较优的BER性能。  相似文献   

3.
Massive MIMO systems offer a high spatial resolution that can drastically increase the spectral and/or energy efficiency by employing a large number of antennas at the base station(BS).In a distributed massive MIMO system,the capacity of fiber backhaul that links base station and remote radio heads is usually limited,which becomes a bottleneck for realizing the potential performance gain of both downlink and uplink.To solve this problem,we propose a joint antenna selection and user scheduling which is able to achieve a large portion of the potential gain provided by the massive MIMO array with only limited backhaul capacity.Three sub-optimal iterative algorithms with the objective of sumrate maximization are proposed for the joint optimization of antenna selection and user scheduling,either based on greedy fashion or Frobenius-norm criteria.Convergence and complexity analysis are presented for the algorithms.The provided Monte Carlo simulations show that,one of our algorithms achieves a good tradeoff between complexity and performance and thus is especially fit for massive MIMO systems.  相似文献   

4.
Transmit antenna selection in spatially multiplexed multiple-input multiple-output (MIMO) systems is a low complexity low-rate feedback technique, which involves transmission of a reduced number of streams from the maximum possible to improve the error rate performance of linear receivers. It has been shown to be effective in enhancing the performance of single-user interference-free point-to-point MIMO systems. However, performance of transmit antenna selection techniques in interference-limited environments and over frequency selective channels is less well understood. In this paper, we investigate the performance of transmit antenna selection in spatially multiplexed MIMO systems in the presence of co-channel interference. We propose a transmission technique for the downlink of a cellular MIMO system that employs transmit antenna selection to minimize the effect of co-channel interference from surrounding cells. Several transmit antenna selection algorithms are proposed and their performance is evaluated in both frequency flat and frequency selective channels. Various antenna selection algorithms proposed in the literature for single user MIMO links are extended to a cellular scenario, where each user experiences co-channel interference from the other cells (intercell interference) in the system. For frequency selective channels, we consider orthogonal frequency division multiplexing (OFDM) with MIMO. We propose a selection algorithm that maximizes the average output SINR over all subcarriers. A method to quantify selection gain in frequency selective channel is discussed. The effect of delay spread on the selection gain is studied by simulating practical fading environments with different delay spreads. The effect of the variable signal constellation sizes and the number of transmitted streams on the bit error rate (BER) performance of the proposed system is also investigated in conjunction with the transmit antenna selection. Simulation results show that for low to moderate interference power, significant improvement in the system performance is achievable with the use of transmit antenna selection algorithms. Even though the gain due to selection in frequency selective channels is reduced compared to that in flat fading channels due to the inherent frequency diversity, the performance improvement is significant when the system is interference limited. The performance improvement due to reduced number of transmit streams at larger signal constellation sizes is found to be more significant in spatially correlated scenarios, and the gain due to selection is found to be reduced with the increased delay spread. It is found that employing transmit antenna selection algorithms in conjunction with adaptation of the number of transmitted streams and the signal constellation sizes can significantly improve the performance of MIMO systems with co-channel interference.  相似文献   

5.
王倩  华权  周应超  申滨 《电信科学》2016,32(8):61-68
大规模MIMO系统中,当小区用户数与基站天线数较大时,各用户的信道条件不尽相同,提出一种适用于大规模MIMO下行链路的基于联合用户分组及天线选择的迫零波束成形算法。将用户分成两组,选择信道条件较优的一组用户来接收信号,并为每一个发送数据流选择最优的基站天线组合进行通信,以较小的性能损失,换取大规模MIMO 射频电路的成本与功耗的大幅度降低。仿真结果证明,该算法能够较好地实现系统性能与硬件复杂度的折中。  相似文献   

6.
在多输入多输出(MIMO)系统中,天线选择技术平衡了系统的性能和硬件开销,但大规模MI-MO系统收发端天线选择复杂度问题一直没有得到很好的解决.基于信道容量最大化的准则,采用两个二进制编码字符串分别表示发射端和接收端天线被选择的状态,提出将二进制猫群算法(BCSO)应用于多天线选择中,以MIMO系统信道容量公式作为猫群的适应度函数,将收发端天线选择问题转化为猫群的位置寻优过程.建立了基于BCSO的天线选择模型,给出了算法的实现步骤.仿真结果表明所提算法较之于基于矩阵简化的方法、粒子优化算法具有更好的收敛性和较低的计算复杂度,选择后的系统信道容量接近于最优算法,非常适用于联合收发端天线选择的大规模MIMO系统中.  相似文献   

7.
为了抑制多用户分布式多入多出(MIMO)系统中的同道干扰(CCI),使系统同时服务于更多用户,提出一种发送天线选择与预编码的联合设计方法。该方法立足于分布式MIMO系统基站端天线较多的特点,将下行发送天线选择与信漏噪比(SLNR)预编码相结合,通过为用户选择不同天线,从根本上减少CCI;在为每个用户选择天线时,先以信道子矩阵的迹为依据进行端口选择,再采用逐减的方法选择使SLNR损失值最小的天线,以保证每个用户对其他用户的干扰尽量小,从而达到进一步抑制CCI的目的。复杂度分析和仿真结果表明,该方法在具有较低复杂度同时,其容量性能仍可逼近最优算法;较之单纯的SLNR预编码,在相同的容量性能约束下,其能够有效增加系统同时服务的用户数。  相似文献   

8.
Antenna selection is a low-cost low-complexity attractive approach in MIMO systems that capture many advantages of these systems. In this paper, our objective is to select the best antennas that maximize throughput with truncated selective repeat automatic repeat request at data link layer in zero-forcing MIMO receivers. We propose a novel binary particle swarm optimization method with throughput as its fitness function for joint transmit and receive antenna selection. The results of simulations demonstrate that the proposed throughput based antenna selection method has better performance compared to capacity based methods, and PSO algorithm can significantly reduce computational complexity.  相似文献   

9.
Wireless communication systems employing multiple antennas at both the transmitter and receiver have been shown to offer significant gains over single-antenna systems. Recent studies on the capacity of multiple-input-multiple-output (MIMO) channels have focused on the effect of spatial correlation. The joint effect of spatial and temporal correlation has not been well studied. In this paper, a geometric MIMO channel model is presented, which considers motion of the receiver and nonisotropic scattering at both ends of the radio link. A joint space-time cross-correlation function is derived from this model and variates with this joint correlation are generated by using the vector autoregressive stochastic model. The outage capacity of this channel is considered where the effects of antenna spacing, antenna array angle, degree of nonisotropic scattering, and receiver motion are investigated. When n transmit and n receive antennas are employed, it is shown that the outage capacity still increases linearly with respect to n, despite the presence of spatial and temporal correlation. Furthermore, analytical expressions are derived for the ergodic capacity of a MIMO channel for the cases of spatial correlation at one end and at both ends of the radio link. The latter case does not lend itself to numerical evaluation, but the former case is shown to be accurate by comparison with simulation results. The proposed analysis is very general, as it is based on the transmit and receive antenna correlations matrices.  相似文献   

10.
Channel state information (CSI) is essential for downlink transmission in millimeter wave( mmWave) multipleinput multiple output (MIMO) systems. Multi-panel antenna array is exploited in mmWave MIMO system due to itssuperior performance. Two channel estimation algorithms are proposed in this paper, named as generalized jointorthogonal matching pursuit (G-JOMP) and optimized joint orthogonal matching pursuit (O-JOMP) for multi-panelmmWave MIMO system based on the compressed sensing (CS) theory. G-JOMP exploits common sparsity structureamong channel response between antenna panels of base station ( BS) and users to reduce the computationalcomplexity in channel estimation. O-JOMP algorithm is then developed to further improve the accuracy of channelestimation by optimal panel selection based on the power of the received signal. Simulation results show that theperformance of the proposed algorithms is better than that of the conventional orthogonal matching pursuit (OMP)based algorithm in multi-panel mmWave MIMO system.  相似文献   

11.
Receive antenna selection for MIMO systems over correlated fading channels   总被引:1,自引:0,他引:1  
In this letter, we propose a novel receive antenna selection algorithm based on cross entropy optimization to maximize the capacity over spatially correlated channels in multiple-input multiple-output (MIMO) wireless systems. The performance of the proposed algorithm is investigated and compared with the existing schemes. Simulation results show that our low complexity algorithm can achieve near-optimal results that converge to within 99% of the optimal results obtained by exhaustive search. In addition, the proposed algorithm achieves near-optimal results irrespective of the mutual relationship between the number of transmit and receive antennas, the statistical properties of the channel and the operating signal-to-noise ratio.  相似文献   

12.
DWT-based joint antenna selection for correlated MIMO channels   总被引:1,自引:0,他引:1  
This paper proposes a new discrete wavelet transform (DWT)-based joint antenna selection scheme for spatially correlated multiple-input multiple output (MIMO) channels. To reduce the severe performance degradation of the traditional antenna selection schemes in correlated channels, a new scheme which employ joint antenna selection (JAS) at both link ends algorithm and embed DWT operations in the receiver-end RF chains is proposed. Through extensive simulations it is demonstrated that the proposed DWT-based joint antenna selection has significant improvement of the capacity for both i.i.d and correlated MIMO channels, while requiring only a minor hardware overhead and low computational complexity for the DWT operations. Moreover, it is shown that the capacity associated with DWT-based JAS is higher than the system employing DWT-based receive antenna selection (RAS) only. This is achieved in i.i.d. and correlated MIMO channels.  相似文献   

13.
We investigate the achievable rate of receive antenna selection MIMO systems in the presence of mutual coupling and spatial correlation. For that, we assume the antenna array to consist of dipole antennas placed side-by-side in a linear pattern and in a very limited physical space. In a first step, we will assume perfect channel state information at the receiver side only and a negligible training overhead compared with the payload. We will demonstrate that in contrast to what might be expected based on results for cases without mutual coupling, MIMO receive antenna selection can achieve higher data rates than the system using all antennas provided that the total number of receive antennas is larger than a critical value that we will further discuss. We then propose an optimal antenna selection processing that ensures rate maximization regardless of the number of antennas used. In a later step, we will address the impact of training overhead on the system achievable rate when the training overhead is considerable. We will show that such a rate is reduced dramatically due to the large amount of training overhead arising from the presence of mutual coupling. To overcome this problem, we will thus propose a novel channel estimation method, which reduces the training overhead greatly and improves the system achievable rate performance.  相似文献   

14.
杜文龙 《电子器件》2021,44(1):97-102
针对相关衰落MIMO信道下的联合天线子集选择,提出了2种选择算法。首先,在已知精确信道知识的情况下,选择算法选择以使接收数据流的SNR最大化和瞬时误差概率即误符号率最小化的天线子集,从而得到平均SNR增益改善的解析表达式;其次,当信道迅速变化时,在已知信道统计知识的情况下,选择算法选择以使全部可能信道实现的平均误差概率最小化的天线子集,从而得到编码增益,在极端相关信道条件下,也可以得到分集增益;基于2种选择算法的性能分析和仿真结果验证了本文提出算法的有效性。  相似文献   

15.
Recent work has shown that multiple-input multiple-output (MIMO) systems with multiple antennas at both the transmitter and receiver are able to achieve great capacity improvement. In such systems, it is desirable to select a subset of the available antennas so as to reduce the number of radio frequency (RF) chains. This paper addresses the problem of antenna selection in correlated channels. We consider a narrowband communication system with M transmit and N receive antennas. We present the criterion for selecting the optimal L/sub t/ out of M transmit and L/sub r/ out of N receive antennas in terms of capacity maximization, assuming that only the long-term channel statistics, instead of the instantaneous channel-state information, are known. Simulations will be used to validate our theoretical analysis and demonstrate that the number of required RF chains can be significantly decreased using our proposed selection strategy, while achieving even better performance than the conventional MIMO system without antenna selection.  相似文献   

16.
Limited feedback unitary precoding for spatial multiplexing systems   总被引:7,自引:0,他引:7  
Multiple-input multiple-output (MIMO) wireless systems use antenna arrays at both the transmitter and receiver to provide communication links with substantial diversity and capacity. Spatial multiplexing is a common space-time modulation technique for MIMO communication systems where independent information streams are sent over different transmit antennas. Unfortunately, spatial multiplexing is sensitive to ill-conditioning of the channel matrix. Precoding can improve the resilience of spatial multiplexing at the expense of full channel knowledge at the transmitter-which is often not realistic. This correspondence proposes a quantized precoding system where the optimal precoder is chosen from a finite codebook known to both receiver and transmitter. The index of the optimal precoder is conveyed from the receiver to the transmitter over a low-delay feedback link. Criteria are presented for selecting the optimal precoding matrix based on the error rate and mutual information for different receiver designs. Codebook design criteria are proposed for each selection criterion by minimizing a bound on the average distortion assuming a Rayleigh-fading matrix channel. The design criteria are shown to be equivalent to packing subspaces in the Grassmann manifold using the projection two-norm and Fubini-Study distances. Simulation results show that the proposed system outperforms antenna subset selection and performs close to optimal unitary precoding with a minimal amount of feedback.  相似文献   

17.
Future cellular systems will employ spatial multiplexing with multiple antennas at both the transmitter and receiver to take advantage of large capacity gains. In such systems it will be desirable to select a subset of available transmit antennas for link initialization, maintenance or handoff. We present a criterion for selecting the optimal antenna subset when linear, coherent receivers are used over a slowly varying channel. We propose use of the post-processing SNRs (signal to noise ratios) of the multiplexed streams whereby the antenna subset that induces the largest minimum SNR is chosen. Simulations demonstrate that our selection algorithm also provides diversity advantage thus making linear receivers useful over fading channels  相似文献   

18.
Recent research results on multiple antennas system namely the multiple input multiple output (MIMO) system show that huge potential be it the spectral efficiency or the enhancement in transmission reliability can be achieved. In this paper, with the assumption that the channel is narrowband and the channel coefficients are known at both link ends, we propose and evaluate several link adaptation (LA) algorithms applied to the spatial multiplexing MIMO systems. Depending on the requirements, the LA technique is designed to optimize either the system spectral efficiency or the bit error rate (BER). We also consider the potential use of the maximum eigen beamforming in supporting concurrent users. The results show that efficient use of the channel information could lead to a significant improvement in the system performance.  相似文献   

19.
Massive multiple-input multiple-output (MIMO) requires a large number (tens or hundreds) of base station antennas serving for much smaller number of terminals, with large gains in energy efficiency and spectral efficiency compared with traditional MIMO technology. Large scale antennas mean large scale radio frequency (RF) chains. Considering the plenty of power consumption and high cost of RF chains, antenna selection is necessary for Massive MIMO wireless communication systems in both transmitting end and receiving end. An energy efficient antenna selection algorithm based on convex optimization was proposed for Massive MIMO wireless communication systems. On the condition that the channel capacity of the cell is larger than a certain threshold, the number of transmit antenna, the subset of transmit antenna and servable mobile terminals (MTs) were jointly optimized to maximize energy efficiency. The joint optimization problem was proved in detail. The proposed algorithm is verified by analysis and numerical simulations. Good performance gain of energy efficiency is obtained comparing with no antenna selection.  相似文献   

20.
Block diagonalization (BD) and successive optimization (SO) are two suboptimal but more practical (compared to dirty paper coding (DPC)) orthogonal linear precoding techniques for the downlink of multiuser MIMO systems. Since the numbers of users supported by BD or SO for a given number of transmit antennas are limited, BD or SO should be combined with scheduling so that a subset of users is selected at a given time slot while meeting the dimensionality requirements of these techniques. On the other hand, receive antenna selection (RAS) is a promising hardware complexity reduction technique. In this paper, we consider user scheduling in conjunction with receive antenna selection. Since exhaustive search is computationally prohibitive, we propose simplified and suboptimal user scheduling algorithms for both BD and SO. For BD, we propose capacity and Frobenius-norm based suboptimal algorithms with the objective of sum rate maximization. Starting from an empty set, each step of proposed algorithms adds the best user from the set of users not selected yet until the desired number of users have been selected. Proposed receive antenna selection works in conjunction with user scheduling to further enhance the sum rate of BD. For SO, a Frobenius-norm based low complexity algorithm is proposed, which maximizes the ratio of the squared Frobenius norm of the equivalent channel (projected to the joint null space of the previously selected users) to the sum of the squared Frobenius norms of the previously selected users’ preprocessed channels. Simulation results demonstrate that the proposed algorithms achieve sum rates close to exhaustive search algorithms with much reduced complexity. We also show that in addition to reduced hardware complexity at the receiver, antenna selection enhances multiuser diversity gain that is achieved with user scheduling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号