首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
以实际生活污水为处理对象,利用生物膜内所具有的A/O环境,针对DO浓度对生物膜法同步脱氮效果影响进行试验研究.研究结果表明,在DO为2.5 mg/L时SND脱氮效果达最佳,TN去除率近70%;DO浓度过高或过低都不利于生物膜内部DO浓度梯度的形成,合理控制DO浓度,对生物膜法同步脱氮尤为重要.  相似文献   

2.
同步硝化反硝化的影响因素研究   总被引:6,自引:1,他引:5  
为了深入研究同步硝化反硝化(SND)的影响因素,试验研究了SBR工艺中C/N、DO和pH对SND率的影响.试验结果表明,在DO=0.45 mg/L、C/N在3.33~8.32的情况下,SND率随着C/N的升高而线性升高.当C/N超过8.32时,SND率增速减缓.在C/N=8.32、DO 0.2~0.4 mg/L的情况下,SND率随DO的升高而升高,当DO超过0.4 mg/L时,SND率开始下降.在C/N=8.32、pH处于7.6~8.4的情况下,SND率随着pH的增加先升高后下降,当pH处于8时,SND率达到最高.  相似文献   

3.
The feasibility of combining a previously reported storage driven denitrification biofilm, where 80% of influent acetate can be converted to poly-beta-hydroxybutyrate (PHB), with a suitable nitrification reactor, either submerged or trickling filter design, to achieve complete biological nitrogen removal was tested. The reactor system showed the potential of complete biological nitrogen removal of waste streams with a C/N ratio as low as 3.93 kg COD/kg N-NH3 at an overall nitrogen removal rate of 1.1 mmole NH3/L/h. While the efficiency and the rates of nitrogen removal were higher than what is observed in traditional or simultaneous nitrification and denitrification (SND) systems, there were two problems that require further development: (a) the incomplete draining of the reactor caused ammonia retention and release in the effluent, limiting the overall N-removal and (b) pH drifts in the nitrification step slowed down the rate of nitrification if not corrected by appropriate pH adjustment or buffering.  相似文献   

4.
笔者以1984—2009年发表在国内外期刊上的关于BAF研究与应用的多篇文献为基础,对曝气生物滤池中的同步硝化反硝化作用从宏观、微观和微生物角度进行机理分析,并从DO、C/N、pH以及滤料角度对影响脱氮过程的因素进行探讨,最后对曝气生物滤池同步硝化反硝化研究进行展望。  相似文献   

5.
Simultaneous nitrification and denitrification (SND) via the nitrite pathway and anaerobic-anoxic enhanced biological phosphorus removal (EBPR) are two processes that can significantly reduce the COD demand for nitrogen and phosphorus removal. The combination of these two processes has the potential of achieving simultaneous nitrogen and phosphorus removal with a minimal requirement for COD. A lab-scale sequencing batch reactor (SBR) was operated in alternating anaerobic-aerobic mode with a low dissolved oxygen concentration (DO, 0.5 mg/L) during the aerobic period, and was demonstrated to accomplish nitrification, denitrification and phosphorus removal. Under anaerobic conditions, COD was taken up and converted to polyhydroxyalkanoates (PHA), accompanied with phosphorus release. In the subsequent aerobic stage, PHA was oxidized and phosphorus was taken up to less than 0.5 mg/L at the end of the cycle. Ammonia was also oxidised during the aerobic period, but without accumulation of nitrite or nitrate in the system, indicating the occurrence of simultaneous nitrification and denitrification. However, off-gas analysis found that the final denitrification product was mainly nitrous oxide (N2O) not N2. Further experimental results demonstrated that nitrogen removal was via nitrite, not nitrate. These experiments also showed that denitrifying glycogen-accumulating organisms rather than denitrifying polyphosphate-accumulating organisms were responsible for the denitrification activity.  相似文献   

6.
Nutrient removal capability of the MBR process has attracted more attention than organics removal in the past few years. Apart from the conventional schemes for nitrogen removal in MBR process, simultaneous nitrification-denitrification (SNDN) requires the most attention for further research. In order to fully understand the fundemantals and mechanism of SNDN in MBRs, a pilot plant was set up. A mathematical model was adopted for investigation and calibration against the observed values. This paper reports a study focusing on evaluating major mechanisms that govern nitrogen removal from domestic wastewater in membrane bioreactors. Two items need to be emphasized in this evaluation: (i) an MBR is basically regarded as an activated sludge process-a suspended growth bioreactor with total biomass recycle and substantially higher biomass concentration; (ii) in this context an AS model, namely ASM1R modified for endogenous respiration, is used for dynamic modelling and calibration of experimental results. The impact of diffusion through biomass which obviously exerts a significant effect on system performance and denitrification is evaluated with success using the adopted model by means of switch functions that regulate nitrification-denitrification with respect to dissolved oxygen concentration in the bulk liquid.  相似文献   

7.
短程硝化反硝化技术研究进展   总被引:1,自引:0,他引:1  
综述了国内外短程硝化反硝化的技术进展。从短程硝化反硝化技术的影响因素、控制方式以及氨氧化菌的分子生物学研究等方面进行了分析,为在更普遍、更广泛的条件下实现短程硝化生物脱氮技术提供参考和支持。  相似文献   

8.
An integrated anaerobic-aerobic treatment system of sulphate-laden wastewater was proposed here to achieve low sludge production, low energy consumption and effective sulphide control. Before integrating the whole system, the feasibility of autotrophic denitrification utilising dissolved sulphide produced during anaerobic treatment of sulphate rich wastewater was studied here. An upflow anaerobic sludge blanket reactor was operated to treat sulphate-rich synthetic wastewater (TOC=100 mg/L and sulphate=500 mg/L) and its effluent with dissolved sulphide and external nitrate solution were fed into an anoxic biofilter. The anaerobic reactor was able to remove 77-85% of TOC at HRT of 3 h and produce 70-90 mg S/L sulphide in dissolved form for the subsequent denitrification. The performance of anoxic reactor was stable, and the anoxic reactor could remove 30 mg N/L nitrate at HRT of 2 h through autotrophic denitrification. Furthermore, sulphur balance for the anoxic filter showed that more than 90% of the removed sulphide was actually oxidised into sulphate, thereby there was no accumulation of sulphur particles in the filter bed. The net sludge productions were approximately 0.15 to 0.18 g VSS/g COD in the anaerobic reactor and 0.22 to 0.31 g VSS/g NO3- -N in the anoxic reactor. The findings in this study will be helpful in developing the integrated treatment system to achieve low-cost excess sludge minimisation.  相似文献   

9.
一株青霉菌异养硝化和好氧反硝化特性的研究   总被引:1,自引:0,他引:1  
从活性污泥中分离出一株青霉菌,培养特性为中温好氧性。初步研究表明:该菌株可利用多种含碳化合物及含氮化合物作为唯一碳源和氮源,并将含氮化合物转化为亚硝态氮,在好氧条件下,能还原硝酸盐,具有同步硝化和反硝化作用。在实验条件下,以铵盐作为反应底物,培养24 h后,溶液中ρ(NO2-)为0.35μg/mL,对硝酸盐有较强的还原能力,24~72 h培养后,溶液中的ρ(NO2-)为3~5μg/mL;在pH=5~11,48 h后对人工合成污水的氨氮去除率可达90%~97.7%。  相似文献   

10.
A stable achievement of nitritation with strong nitrogenous wastewaters is considered as a difficult task in practice, probably due to the fate of interaction between dominating heterotrophs and nitrifier species. An experimental study was carried out to examine the organic effects in lab-scale biofilm nitritation reactors. The control unit without organic addition showed a stable nitritation performance for more than 220 days of operating period. The nitritation activity gradually failed at the reactors with an organic addition, but the nitritation activity eventually recovered with a prolonged aeration. It was not possible to explain the nitritation recovery with neither free ammonia inhibition concept nor DO competition hypothesis in these cases. The results suggest that the nitritation with organic requires a long start-up period for acclimation. In addition, the results of quinone profile analysis were in agreement with nitritation activity in reactors. The diversity of microbial community in the nitritation reactors could be described by the quinone profiles.  相似文献   

11.
We report on a novel process for total nitrogen (TN) removal, the hybrid membrane biofilm process (HMBP). The HMBP uses air-supplying hollow-fibre membranes inside an activated sludge tank, with suppressed aeration, to allow concurrent nitrification and denitrification. We hypothesised that a nitrifying biofilm would form on the membranes, and that the low bulk-liquid BOD concentrations would encourage heterotrophic denitrifying bacteria to grow in suspension. A nitrifying biofilm was initially established by supplying an influent ammonia concentration of 20 mgN/L. Subsequently, 120 mg/L acetate was added to the influent as BOD. With a bulk-liquid SRT of only 5 days, nitrification rates were 0.85 gN/m(2) per day and the TN removal reached 75%. The biofilm thickness was approximately 500 lim. We used DGGE to obtain a microbial community fingerprint of suspended and attached growth, and prepared a clone library. The DGGE results, along with the clone library and operating data, suggest that nitrifying bacteria were primarily attached to the membranes, while heterotrophic bacteria were predominant in the bulk liquid. Our results demonstrate that the HMBP is effective for TN removal, achieving high levels of nitrification with a low bulk-liquid SRT and concurrently denitrifying with BOD as the sole electron donor.  相似文献   

12.
In this study, laboratory-scale experiments were conducted applying a Sequencing Batch Reactor (SBR) activated sludge process to a wastewater stream from a pharmaceutical factory. Nitrogen removal can be achieved via partial nitrification and denitrification and the efficiency was above 99% at 23 degrees C+/-1. The experimental results indicated that the nitrite oxidizers were more sensitive than ammonia oxidizers to the free ammonia in the wastewater. The average accumulation rate of nitrite was much higher than that of nitrate. During nitrogen removal via the nitrite pathway, the end of nitrification and denitrification can be exactly decided by monitoring the variation of pH. Consequently, on-line control for nitrogen removal from the pharmaceutical manufacturing wastewater can be achieved and the cost of operation can be reduced.  相似文献   

13.
Batch filtration tests were conducted to compare the characteristics of membrane biofouling with regard to nitrification and denitrification. A Modified Fouling Index (MFI) was obtained using a stirred cell tester. The denitrification assays showed higher membrane fouling rates than the nitrification assays. The fouling became worse, not only due to pore blocking resistance, but also from cake layer resistance after denitrification. The Extracellular Polymeric Substances (EPS) concentration and relative hydrophobicity were decreased after denitrification, resulting in floc deterioration. The floc deterioration was assumed to have increased the cake layer resistance in the filtration test. The protein Soluble Microbial Products (SMP) concentration, portion of high molecular weight in carbohydrate SMP and relative hydrophobicity were increased after denitrification, which was assumed to cause membrane pore blocking. The changes in the EPS and SMP characteristics were the main fouling parameters in denitrification.  相似文献   

14.
A laboratory study on nitrification of high-strength source-separated urine was conducted by means of sequencing batch reactors (SBR) and membrane bioreactors (MBR). The highest influent ammonia concentration for SBR and MBR reached more than 2,400 and 1,000 mg N/L, while the maximum pH was about 9 and 8.9, respectively. The ammonia oxidizing efficiency in both SBRs and MBRs was around 50%, which was restrained mainly by the deficiency of alkalinity in bulks. Meanwhile, the nitrite accumulation did also dominate in these two systems, and the major factor to inhibit the nitrite oxidization was thought to be the high free ammonia and free nitrous acid content in bulks. Hence, an ammonia nitrite solution was achieved with concentration ratio of 1:1; after that ammonia oxidation was restrained owing to the deficiency of alkalinity in urine. The temperature and influent ammonia content have no great influence on the nitrification process in both kinds of bioreactors. The nitrification can be progressed under a solids retention time (SRT) longer than 30 d; however, termination of ammonia oxidization was observed as the SRT fell below 20 d. The nitrifier biomass showed an excellent settleability, such that the suspended solids (SS) in effluent was of a low average, about 60 mg/L. This study on the stabilization of human urine will be useful to understand the process of urine separation from source.  相似文献   

15.
Constructed wetlands can be used to decrease the high ammonium concentrations in landfill leachates. We investigated nitrification/denitrification activity and the corresponding bacterial communities in landfill leachate that was treated in a compact constructed wetland, Tveta Recycling Facility, Sweden. Samples were collected at three depths in a filter bed and the sediment from a connected open pond in July, September and November 2004. Potential ammonia oxidation was measured by short-term incubation method and potential denitrification by the acetylene inhibition technique. The ammonia-oxidising and the denitrifying bacterial communities were investigated using group-specific PCR primers targeting 16S rRNA genes and the functional gene nosZ, respectively. PCR products were analysed by denaturing gradient gel electrophoresis and nucleotide sequencing. The same degree of nitrification activity was observed in the pond sediment and at all levels in the filter bed, whereas the denitrification activity decreased with filter bed depth. Denitrification rates were higher in the open pond, even though the denitrifying bacterial community was more diverse in the filter bed. The ammonia-oxidising community was also more varied in the filter bed. In the filter bed and the open pond, there was no obvious relationship between the nitrification/denitrification activities and the composition of the corresponding bacterial communities.  相似文献   

16.
As part of a study examining the efficacy of high-rate algal pond treatment of high-strength abattoir wastewater, the impact of pond configuration and loading rate on nitrification was determined. The extent of nitrification in all ponds was consistent with mass balance estimates of oxygen demand and availability. Deeper ponds were more stable nitrifying systems, with shallow ponds displaying greater variation in response to changes in nitrogen loading. In a separate experiment the pond system was modified by covering a part of an in-series HRAP to exclude light, providing conditions suitable for denitrification. Specific denitrification rates were often within the range typical for endogenous carbon sources, with mass balance calculations indicating removals of up to 95%.  相似文献   

17.
In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.  相似文献   

18.
This paper deals with the structural identifiability and the identification of the parameters of a reduced order model used for control of a single reactor activated sludge process doing nitrification and denitrification. This reduced order model is splitted into two submodels, one 3-dimensional state submodel in aerobic conditions and one 2-dimensional state submodel in anoxic conditions. The identifiability analysis is based on on-line oxygen and nitrate concentrations data. It has been shown that the reduced order model is structurally identifiable. The parameter identification has been carried out by using the simplex method of Neider and Mead. Simulation results performed over a range of six hours (two aerobic/anoxic cycles), show that there exists a good fit between the simulated solution and the actual behavior of a lab scale pilot plant.  相似文献   

19.
This study builds on previous experience of maximising the formation of COD as poly-hydroxybutyrate (PHB) and now describes a feedback technique of preserving the use of PHB for denitrification resulting in enhanced nitrogen removal rather than allowing its wasteful oxidation by oxygen. The feedback technique uses on-line SOUR monitoring for detecting the end-point of nitrification and controlling the aerobic phase length accordingly. The laboratory SBR was operated such that all organic substrate (acetate) was rapidly converted to PHB, which then served as the electron donor for nitrogen removal via simultaneous nitrification and denitrification (SND) during the aerobic phase (up to 70% SND). During SBR cycling with a fixed aeration length (240 minutes), PHB was unnecessarily oxidised after ammonium depletion, resulting in little denitrification and poor total nitrogen removal (69%). However, when the aerobic phase length was controlled via the SOUR, up to 1.8 CmM PHB (58 mg L(-1) COD) could be preserved, enabling improved total nitrogen removal (86%). The drop in the SOUR after ammonium depletion was a reproducible event that could be detected even when using raw wastewater and fresh activated sludge. The SOUR-control technique holds promise to build up PHB over a number of SBR cycles. While advanced oxygen-control is used for improved N-removal in several existing WWTPs, this study investigates the importance of oxygen control with relevance to PHB driven SND in sequencing batch reactors.  相似文献   

20.
Based on the structure of the hybrid respirometer previously developed in our group, a novel implementation for titrimetry was developed, in which two pH electrodes were installed at the inlet and outlet of the measuring cell. The software capable of digital filtering and titration time delay correction was developed in LabVIEW. The hardware and software of the titrimeter and the respirometer were integrated to construct a novel system of respirometry-titrimetry. The system was applied to monitor a batch nitrification process. The obtained profiles of oxygen uptake rate (OUR) and hydrogen ion production rate (HPR) are consistent with each other and agree with the principle of the biological nitrification reaction. According to the OUR and HPR measurements, the oxidized ammonium concentrations were estimated accurately. Furthermore, the endpoint of ammonium oxidation was identified with much higher sensitivity by the HPR measurement. The system could be potentially used for on-line monitoring of biochemical reactions occurring in any kind of bioreactors because its measuring cell is completely independent of the bioreactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号