共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
介绍图像边缘的基本概念和经典的图像边缘检测方法。并着重近年来发展最快的新的图像边缘检测方法。这对于进一步学习和寻找更好的图像边缘检测方法具有实用意义。 相似文献
3.
4.
根据细胞神经网络(CNN)数学模型,提出一种新的彩色图像边缘检测方法。新方法继承了CNN的优点,解决了CNN现有算法不能直接检测彩色图像边缘的问题。该方法充分利用图像中的颜色信息,通过欧几里得距离度量像素之间的差异,使CNN方程可以在RGB彩色空间中进行运算。对CNN模板进行理论分析和鲁棒性研究,提出一个实现彩色图像边缘检测功能要求的CNN鲁棒性定理,为设计相应的CNN模板参数提供了解析判据。实验结果表明,该方法可以对彩色图像进行有效的边缘提取,定量评价验证了CNN边缘检测定位准确的优点。 相似文献
5.
6.
7.
本文主要对目前存在的图像边缘检测的方法进行了研究分析,重点研究了小波变换在图像边缘检测方而的优势,提出了基于连续小波变换的边缘检测方法,并编程展示编码的结果,验证其在实际应用中的可行性。 相似文献
8.
9.
10.
11.
12.
路面裂缝检测是道路运营和维护的一项重要工作,由于裂缝没有固定形状而且纹理特征受光照影响大,基于图像的精确裂缝检测是一项巨大的挑战。本文针对裂缝图像的特点,提出了一种U型结构的卷积神经网络UCrackNet。首先在跳跃连接中加入Dropout层来提高网络的泛化能力;其次,针对上采样中容易产生边缘轮廓失真的问题,采用池化索引对图像边界特征进行高保真恢复;最后,为了更好地提取局部细节和全局上下文信息,采用不同扩张系数的空洞卷积密集连接来实现感受野的均衡,同时嵌入多层输出融合来进一步提升模型的检测精度。在公开的道路裂缝数据集CrackTree206和AIMCrack上测试表明,该算法能有效地检测出路面裂缝,并且具有一定的鲁棒性。 相似文献
13.
本文提出了一种新的彩色图像量化算法.它是一种基于自组织神经网络和线性像素置换的后聚类算法.线性像素置换是一种均匀选取图像中的像素的方法.根据线性像素置换确定改进的自组织神经网络的初始权重向量和训练样本集.选取部分样本参加训练加快训练过程.实验结果表明,与其它量化优化算法比较,本文提出的算法在量化图像质量和算法效率方面均有明显提高,而且不依赖于算法的初始条件. 相似文献
14.
各类显示屏中Mura缺陷的自动识别和定位对提高显示屏幕的产品品质具有重要作用,是当前迫切需要发展的重要技术之一。针对当前手机屏幕Mura缺陷对比度低、缺乏明显边缘等特点,文中提出一种基于图像灰度曲线的Mura缺陷检测方法及其改进方法。改进方法基于均值滤波平滑和降采样原理,通过研究采样线上灰度曲线的波峰与波谷信息,利用BP神经网络构建线Mura缺陷的自动检测和定位算法。结合真实手机屏幕图像验证结果表明,与现有多种Mura缺陷检测方法相比,本文的改进方法能更准确快速地识别手机屏幕中的线Mura缺陷,识别准确率达到98.33%,检测过程无需调节参数,实现了线Mura缺陷的自动检测和定位。 相似文献
15.
目前,网络入侵技术越来越先进,许多黑客都具备反检测的能力,他们会有针对性地模仿被入侵系统的正常用户行为;或将自己的入侵时间拉长,使敏感操作分布于很长的时间周期中;还可能通过多台主机联手攻破被入侵系统.对于伪装性入侵行为与正常用户行为来说,仅靠一个传感器的报告提供的信息来识别已经相当困难,必须通过多传感器信息融合的方法来提高对入侵的识别率,降低误警率.应用基于神经网络的主观Bayes方法,经实验,效果良好. 相似文献
16.
描述了一种通过声学信号检测玻璃制品缺陷的方法。在实现步骤上,首先采集了不同缺陷类型的玻璃瓶敲击声,然后经过频谱变换及小波包变换,将敲击信号映射至不同的变换域中,并在每个变换域中提取信号的特征,从而将样本的缺陷信息对应为统计特征和物理特征,并采用基于互信息量的特征选择算法对特征空间进行降维;降维后的特征子集作为后向传播神经网络的输入参数,再由该神经网络实现对玻璃缺陷的自动化检测。结果表明,在已有实验样本数据下,该缺陷检测算法能准确高效地检测出存在缺陷的样本,识别结果的F-值稳定在95%左右。 相似文献
17.
18.
Recently years, convolutional neural networks (CNNs) have proven to be powerful tools for a broad range of computer vision tasks. However, training a CNN from scratch is difficult because it requires a large amount of labeled training data, which remains a challenge in medical imaging domain. To this end, deep transfer learning (TL) technique is widely used for many medical image tasks. In this paper, we propose a novel multisource transfer learning CNN model for lymph node detection. The mechanism behind it is straightforward. Point-wise (1 × 1) convolution is used to fuse multisource transfer learning knowledge. Concretely, we view the transferred features as priori domain knowledge and 1 × 1 convolutional operation is implemented after pre-trained convolution layers to adaptively combine the transfer information for target task. In order to learn non-linear transferred features and prevent over-fitting, we present an encode process for the pre-trained convolution kernels. At last, based on convolutional factorization technique, we train the proposed CNN model and the encoder process jointly, which improves the feasibility of our approach. The effectiveness of the proposed method is verified on lymph node (LN) dataset: 388 mediastinal LNs labeled by radiologists in 90 patient CT scans, and 595 abdominal LNs in 86 patient CT scans for LN detection. Our method demonstrates sensitivities of about 85%/71% at 3 FP/vol. and 92%/85% at 6 FP/vol. for mediastinum and abdomen respectively, which compares favorably to previous methods. 相似文献
19.
This paper presents an effective lip pixel detection method based on blocks and deep neural networks. Since only-rough localization of a pair of lips is a trivial task, we use a rectangle that loosely bounds two lips as an input region of interest for lip detection. For each pixel in the rectangle region we generate a block whose center is at the pixel, and the pixel is classified into either a lip or non-lip pixel by exploiting the pixels in the block. Deep neural networks are trained using a sufficient number of labeled blocks obtained from a quite tractable number of labeled images. As a result, lip pixels are detected with high accuracy despite negligible labeling effort. Experimental results demonstrate the effectiveness of the presented method. We show that even single-minute training can outperform the mouth map with the best threshold. 相似文献