首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation and casting of metal-particulate non-metal composites   总被引:3,自引:0,他引:3  
A new process for the preparation and casting of metal-particulate non-metal composites is described. Particulate composites of ceramic oxides and carbides and an Al-5 pet Si-2 pct Fe matrix were successfully prepared. From 10 to 30 wt pct of A12O3, SiC, and up to 21 wt pct glass particles, ranging in size from 14 to 340 ώ were uniformly distributed in the liquid matrix of a 0.4 to 0.45 fraction solid slurry of the alloy. Initially, the non-wetted ceramic particles are mechanically entrapped, dispersed and prevented from settling, floating, or agglomerating by the fact that the alloy is already partially solid. With increasing mixing times, after addition, interaction between the ceramic particles and the liquid matrix promotes bonding. Efforts to mix the non-wetted particles into the liquid alloy above its liquidus temperature were unsuccessful. The composite can then be cast either when the metal alloy is partially solid or after reheating to above the liquidus temperature of the alloy. End-chilled plates and cylindrical slugs of the composites were sand cast from above the liquidus temperature of the alloy. The cylindrical slugs were again reheated and used as starting material for die casting. Some of the reheated composites possessed “thixotropy.” Distribution of the ceramic particles in the alloy matrix was uniform in all the castings except for some settling of the coarse, 340ώ in size, particles in the end-chilled cast plates.  相似文献   

2.
A metallographic study of the porosity and fracture behavior in unidirectionally solidified end chill castings of 319.2 aluminum alloy (Al-6.2 pct Si-3.8 pct Cu-0.5 pct Fe-0.14 pct Mn-0.06 pct Mg-0.073 pct Ti) was carried out using optical microscopy and scanning electron microscopy (SEM) to determine their relationship with the tensile properties. The parameters varied in the production of these castings were the hydrogen (∼0.1 and ∼0.37 mL/100 g Al), modifier (0 and 300 ppm Sr), and grain refiner (0 and 0.02 wt pct Ti) concentrations, as well as the solidification time, which increased with increasing distance from the end chill bottom of the casting, giving dendrite arm spacings (DASs) ranging from ∼15 to ∼95 /im. Image analysis and energy dispersive X-ray (EDX) analysis were employed for quantification of porosity/microstructural constituents and fracture surface analysis (phase identification), respectively. The results showed that the local solidification time(viz. DAS) significantly influences the ductility at low hydrogen levels; at higher levels, however, hydro-gen has a more pronounced effect (porosity related) on the drop in ductility. Porosity is mainly observed in the form of elongated pores along the grain boundaries, with Sr increasing the porosity volume percent and grain refining increasing the probability for pore branching. The beneficial effect of Sr modification, however, improves the alloy ductility. Fracture of the Si, β-Al5FeSi, α- Al15(Fe,Mn)3Si2, and Al2Cu phases takes place within the phase particles rather than at the particle/Al matrix interface. Sensitivity of tensile properties to DAS allows for the use of the latter as an indicator of the expected properties of the alloy.  相似文献   

3.
This article describes the results of an investigation into the microstructure and mechanical properties of a gravity die cast and direct squeeze cast LM25 alloy (Al-7Si-0.3Mg-0.3Fe). The direct squeeze cast LM25 alloy has superior mechanical properties compared to the gravity die cast LM25 alloy, especially with regard to ductility, which is increased from ∼1.7 pct for the gravity die cast LM25 alloy to ∼8.0 pct for the direct squeeze cast LM25 alloy in the T6 heat-treated condition. This increase in ductility is due to (1) the removal of porosity, (2) a decrease in Si particle size, and (3) a refinement of the Fe-Si-aluminide particles. High cooling rates in direct squeeze casting result in quench modification of the Si particles, such that chemical modification with Sr or Na may not be required. In addition, direct squeeze casting is more tolerant of Fe impurities in the alloy, due to the formation of smaller Fe-Si-aluminide particles than those in gravity die cast material. The direct squeeze cast LM25+Fe alloy (Al-7Si-0.3Mg-1.0Fe) has a ductility of ∼6.5 pct, compared to that of ∼0.5 pct for the gravity die cast LM25 + Fe alloy in the T6 heat-treated condition. This increase in tolerance to Fe impurities can lead to a substantial reduction in manufacturing costs due to (1) reduced raw-material costs, (2) reduced die sticking, and (3) improved die life.  相似文献   

4.
Copper mold cast cylinders of (Ti0.5Cu0.25Ni0.15Sn0.05Zr0.05)100−x Mo x composites are prepared. Addition of Mo in the bulk glass-forming alloy induces the formation of a dendrite/matrix composite. For 3-mm-diameter cylinders, the matrix exhibits a homogenous ultrafine microstructure for Mo content of 2.5 at. pct, and a fine eutectic microstructure for 5 at. pct Mo. For 5-mm-diameter cylinders, the matrix exhibits a dendritic microstructure for 2.5 at. pct Mo, and exhibits a coarser eutectic microstructure for 5 at. pct Mo. Despite the formation of a dendrite/nanostructured matrix composite in the cylinders, the quenched surface layer with a nanoscale grain size dominates the deformation and fracture of the 3-mm-diameter cylinders. More than 56 vol pct quenched layer leads to a distensile fracture mode and the samples exhibit high fracture strength and high Young’s modulus but low ductility. For 5-mm-diameter cylinders, the composite microstructure becomes dominant due to its more than 64 vol pct volume fraction leading to a cone-shaped fracture surface. The samples exhibit lower yield strength and lower Young’s modulus but better ductility compared to the 3-mm-diameter cylinders. The mechanical behavior of the Mo-bearing composites strongly depends on the microstructural homogeneity and casting defects formed upon solidification.  相似文献   

5.
The orientation dependence of deformation and fracture modes was investigated for a directionally-solidified Ni−Ni3Al−Ni3Cb lamellar eutectic alloy (Ni-20 wt pct Cb-2.5 wt pct al-6.0 wt pct Cr) using optical and transmission microscopy to examine tensile and compression specimens tested at temperatures below the softening point of the δ (Ni3Cb) reinforcing phase (∼1050 K). In this temperature range there is a large difference between longitudinal and transverse tensile ductibility (>5 pct longitudinalvs<1 pct transverse). No single preferred fracture path (such as interfacial delamination) could be found to account for the low transverse tensile ductility. Analysis of the δ twinning geometry, however, indicated that the twinning strains for twins of the type {211}, which operate copiously in longitudinal tension, are negative in most transverse orientations, with Schmid factors being very low (<0.013) in the limited range of transverse orientations where {211} twin strains are positive. Examination of transverse tension test specimens broken at 1033 K confirm the absence of {211} twins, with only limited {011} twinning being found in selected grains, leading to the conclusion that the relatively low transverse tensile ductility of the eutectic results from the very limited number of deformation systems which operate in the δ reinforcing phase below the softening temperature.  相似文献   

6.
Although Al-Li-Cu alloys showed initial promise as lightweight structural materials, implementation into primary aerospace applications has been hindered due in part to their characteristic anisotropic mechanical and fracture behaviors. The Air Force recently developed two isotropic Al-Li-Cu-X alloys with 2.1 wt pct Li and 1.8 wt pct Li designated AF/C-489 and AF/C-458, respectively. The elongation at peak strength was less than the required 5 pct for the 2.1 wt pct Li variant but greater than 10 pct for the 1.8 wt pct Li alloy. The objectives of our investigations were to first identify the mechanisms for the large difference in ductility between the AF/C-489 and AF/C-458 alloys and then to develop an aging schedule to optimize the microstructure for high ductility and strength levels. Duplex and triple aging practices were designed to minimize grain boundary precipitation while encouraging matrix precipitation of the T1 (Al2CuLi) strengthening phase. Certain duplex aged conditions for the AF/C-489 alloy showed significant increases in ductility by as much as 85 pct with a small decrease of only 6.5 and 2.5 pct in yield and ultimate tensile strength, respectively. However, no significant variations were found through either duplex or triple aging practices for the AF/C-458 alloys, thus, indicating a very large processing window. Grain size and δ′ (Al3Li) volume fraction were determined to be the major cause for the differences in the mechanical properties of the two alloys.  相似文献   

7.
8.
9.
Aluminum hard particle composites were synthesized by the solidification processing technique and the composite melt was solidified using gravity and pressure die castings. An aluminum-silicon alloy (A 332.1) has been used as the matrix and silicon carbide particles (quantity: 10 wt pct, and size: 50 to 80 μm) have been used as reinforcement for synthesis of the composite. The microstructure of the pressure die cast composite is found to be finer than those of the gravity cast ones. Additionally, the distribution of SiC particles in the Al alloy matrix is found to be more uniform in the pressure die-cast composites compared to the gravity die-cast ones. The mechanical properties such as ultimate tensile strength, hardness, and ductility are observed to be superior in the case of pressure die-cast composites compared to the gravity-cast one. The two-body abrasive wear resistance of the Al-composite is also noted to be greater in the pressure die-cast composite than in the gravity-cast one. The effects of injection pressure on the mechanical properties and wear resistance of the pressure die-cast composites are examined. It is observed that the wear resistance (inverse of wear rate), hardness, and strength of the Al-SiC composites increase with the increase in injection pressure during pressure die casting. This may be due to the finer microstructure, the absence of casting defects, and the stronger interfacial bonding between the matrix and hard dispersoid in pressure die-cast composites. The wear rate of the alloys and composites is studied as a function of their hardness, strength, and Young’s modulus. It is noted that the wear rate is primarily controlled by hardness even though other mechanical properties influence the wear behavior of the materials to some extent. An attempt is made to establish an empirical relation to correlate the wear rate of material with the mechanical properties such as hardness, ultimate tensile strength, and elongation.  相似文献   

10.
Cast Mg-Al-Si composites synthesized by addition of Al-Si alloy containing 10, 15, and 20 wt pct of Si, in molten magnesium, to generate particles of Mg2Si by reaction between silicon and magnesium during stir casting has opened up the possibility to control the size of these particles. The microstructure of the cast composite consists of relatively dark polyhedral phase of Mg2Si and bright phase of β-Al12Mg17 along the boundary between dendrites of α-Mg solid solution. After hot forging at 350 °C, the microstructure has changed to relatively smaller sizes of β-Al12Mg17 and Mg2Si particles apart from larger grains surrounded by smaller grains due to dynamic recovery and recrystallization. Some of the Mg2Si particles crack during forging. In both the cast and forged composite, the Brinell hardness increases rapidly with increasing volume fraction of Mg2Si, but the hardness is higher in forged composites by about 100 BHN. Yield strength in cast composites improves over that of the cast alloy, but there is a marginal increase in yield strength with increasing Mg2Si content. In forged composites, there is significant improvement in yield strength with increasing Mg2Si particles and also over those observed in their cast counterpart. In cast composites, ultimate tensile strength (UTS) decreases with increasing Mg2Si content possibly due to increased casting defects such as porosity and segregation, which increases with increasing Mg2Si content and may counteract the strengthening effect of Mg2Si content. However, in forged composite, UTS increases with increasing Mg2Si content until 5.25 vol pct due to elimination of segregation and lowering of porosity, but at higher Mg2Si content of 7 vol pct, UTS decreases, possibly due to extensive cracking of Mg2Si particles. On forging, the ductility decreases in forged alloy and composites possibly due to the remaining strain and the forged microstructure. The initiation fracture toughness, J IC , decreases drastically in cast composites from that of Mg-9 wt pct. alloy designated as MA alloy due to the presence Mg2Si particles. Thereafter, J IC does not appear to be very sensitive to the increasing presence of Mg2Si particles. There is drastic reduction of J IC on forging of the alloy, which was attributed to the remaining strain and forged microstructure, and it is further lowered in the composites because of cracking of Mg2Si particles. The ratio of the tearing modulus to the elastic modulus in cast composites shows a lower ratio, which decreases with increasing Mg2Si content. The ratio decreases comparatively more on forging of cast MA alloy than those observed in forged composites.  相似文献   

11.
A technique to produce cast Al-11.8 pct Si alloy composites containing up to 40 vol pct (15 pct by weight) dispersions of 125 μm size coconut shell char particles is described. The technique consists of stirring shell char particles into the vortex created by mechanical stirring of melts and subsequent casting of composite melts in suitable molds. The composite melts were also pressure die cast at a pressure of 100 MPa into cylindrical castings. The incorporation of large volume fraction of shell char particles is aided by (a) preheating of the particles to about 500 ° to 600 ° for two hours before introduction into the melts, and (b) alloying of Al-11.8 pct Si melts with 3 to 6 pct Mg. Electron Probe Micro Analysis (EPMA) analysis indicated an Mg enriched region around dispersed char particles in the composite indicating that prealloying with Mg probably improves wetting between char particles and the melt. Dispersions of 15 pct wt of char particles lead to decreases in hardness (from 85 BHN to 55 BHN), compression strength (from 542.30 MPa to 218.68 MPa), U. T. S., (from 164.16 MPa to 63.75 MPa), and electrical conductivity (from 27.8 pct IACS to 11 pct IACS). However, since these decreases are accompanied by a decrease in density, specific strength values of Al-11.8 pct-shell char composites are adequate for a variety of applications. Adhesive wear rates and friction coefficient values at low sliding speeds (0.56 m per second, and at loads of 10 N and 60 N) decrease with increase in wt pct of char particles under dry conditions. M. K. SURAPPA and P. K. ROHATGI, both formerly with Regional Research Laboratory, Trivandrum.  相似文献   

12.
A series of Al3Ni fiber reinforced composites with a matrix composition varying from pure aluminum to Al-3.3 wt pct Cu were prepared by directional solidification of Al-Ni-Cu alloys. The solidification conditions were kept constant in all cases atG/R ≃ 104 °C. s/mm2 (G is the temperature gradient andR is the growth rate). The mechanical properties of the composites were studied in the as grown and in the heat treated conditions and the results were discussed in terms of the structure and composition. With the techniques used, it was possible to preserve the Al-Al3Ni eutectic composite structure while strengthening the matrix by copper addition. The addition of 1 wt copper to the matrix caused a considerable increase in the mechanical strength, especially after heat treatment, without affecting the ductility. Strength values of the order of 530 MN/m2 were reached in the heat treated composites which is higher than predicted by the rule of mixtures. This is attributed to the high work hardening capacity of the matrix especially in the presence of θ′ phase. Massive Al3Ni rods and dendrites caused premature fracture and reduction in the strength of the composites containing 2 and 3 wt pct copper. Eliminating these defects by using higherG/R values can produce composites with exceptionally high strength.  相似文献   

13.
A series of Al3Ni fiber reinforced composites with a matrix composition varying from pure aluminum to Al-3.3 wt pct Cu were prepared by directional solidification of Al-Ni-Cu alloys. The solidification conditions were kept constant in all cases atG/R ≃ 104 °C · s/mm2 (G is the temperature gradient andR is the growth rate). The mechanical properties of the composites were studied in the as grown and in the heat treated conditions and the results were discussed in terms of the structure and composition. With the techniques used, it was possible to preserve the Al-Al3Ni eutectic composite structure while strengthening the matrix by copper addition. The addition of 1 wt copper to the matrix caused a considerable increase in the mechanical strength, especially after heat treatment, without affecting the ductility. Strength values of the order of 530 MN/m2 were reached in the heat treated composites which is higher than predicted by the rule of mixtures. This is attributed to the high work hardening capacity of the matrix especially in the presence of θ’ phase. Massive Al3Ni rods and dendrites caused premature fracture and reduction in the strength of the composites containing 2 and 3 wt pct copper. Eliminating these defects by using higherG/R values can produce composites with exceptionally high strength.  相似文献   

14.
Creep tests were conducted on an Al-6092 alloy reinforced with 25 vol pct SiC particulates and on an unreinforced Al-6092 matrix alloy. Both materials exhibit creep behavior indicating the presence of a threshold stress and both have a true stress exponent of 3, but with meaured activation energies for creep of ∼135 and ∼230 kJ mol−1 in the unreinforced and reinforced materials, respectively. By incorporating a temperature-dependent load transfer into the analysis, it is shown that the activation energy for the composite is reduced to ∼130 kJ mol−1. Both materials therefore exhibit creep behavior consistent with viscous glide and the dragging of Mg solute atmospheres, and in addition the results for the composite are consistent with the proposal that the creep of metal matrix composites divides into two classes depending upon the rate-controlling process in the matrix alloys.  相似文献   

15.
A laboratory-scale chemical vapor deposition (CVD) reactor was used to perform “continuous” Hf doping experiments while the surface of a single-crystal Ni alloy was being aluminized to form an aluminide (β-NiAl) coating matrix for 45 minutes at 1150 °C. The continuous doping procedure, in which HfCl4 and AlCl3 were simultaneously introduced with H2, required a high HfCl4/AlCl3 ratio (>∼0.6) to cause the precipitation of Hf-rich particles (∼0.1 μm) at grain boundaries of the coating layer, with the overall Hf concentration of ∼0.05 to 0.25 wt pct measured in the coating layer by glow-discharge mass spectroscopy (GDMS). Below this ratio, Hf did not incorporate as a dopant into the growing coating layer from the gas phase, as the coating matrix appeared to be “saturated” with other refractory elements partitioned from the alloy substrate. In comparison, the Hf concentration in the aluminide coating layer formed on pure Ni was in the range of ∼0.1 wt pct, which was close to the solubility of Hf estimated for bulk NiAl. Interestingly, the segregation of Hf and the formation of a thin γ′-Ni3Al layer (∼0.5 μm) at the coating surface were consistently observed for both the alloy and pure-Ni substrates. The formation of the thin γ′-Ni3Al layer was attributed to an increase in the elastic strain of the β-NiAl phase, associated with the segregation of Hf as well as other refractory alloying elements at the coating surface. This phenomenon also implied that the coating layer was actually growing at the interface between the γ′-Ni3Al layer and the β-NiAl coating matrix, not at the gas/coating interface, during the early stage of the coating growth.  相似文献   

16.
The effect of magnesium content on the aging behavior of Al-Zn-Mg-Cu alloy reinforced with alumina (A12O3) was studied by using the differential scanning calorimetry (DSC) technique and hardness measurement. The magnesium contents were studied in the range from 1.23 to 2.97 wt pct. The addition of magnesium was found to increase the coherent Guinier-Preston (GP) zones in com-posites. The apparent formation enthalpy of GP zones of composites (0.1V f) was 0.932 cal/g for 1.23 wt pct magnesium content and 1.375 cal/g for 2.97 wt pct magnesium content. The precipitation time to achieve the maximum hardness in the composites depends on the magnesium content. The time changed from 12 to 48 hours as the magnesium content increased from 1.23 to 2.97 wt pct. Both Vickers microhardness and Rockwell hardness increased with increasing magnesium content. The maximum hardness occurred in the composites that contained maximum amounts of GP zones and η′ precipitates. However, the microhardness of the composites was always lower than that of monolithic alloys due to the alumina fibers which caused the suppression of GP zones and η′ for-mation in the composites.  相似文献   

17.
18.
A reciprocating extrusion process was developed to consolidate 6061-Al2O3p composites from mixed powders. The 6061 alloy powder was first dehydrated in a vacuum chamber at 450 °C and then mixed with 12.5 μm Al2O3 powder in various volume fractions: 0, 5, 10, 20, and 30 pct. The mixed powders were hot pressed at 300 °C under a pressure of 300 MPa and finally extruded reciprocatingly 14 times at 460 °C. The results show that the composites were fully densified, with no sign of pores or oxide layers observable in the optical microscope. The Al2O3 particles were distributed uniformly in the matrix. As compared with 6061 alloys, the composites demonstrated a smaller precipitation hardening and elongation, but exhibited a higher Young’s modulus and a larger work hardening capacity. The degradation of precipitation hardening was due to the loss of Mg, which reacts with Al2O3 to form MgAl2O4. The large work-hardening capacity is attributable to the incompatibility between Al2O3 and the matrix, which possibly generates more dislocations to harden the matrix. The composites had much higher friction coefficients and greater wear resistances than the 6061 alloy against steel disc surface. The friction coefficient of the 6061-30 vol pct Al2O3p composite was double that of the 6061 alloy and the wear resistance was 100-fold. As compared with similar composites reported previously, these composites possessed much higher elongation at the same strength level. A 30 vol pct Al2O3p still displayed an elongation of 9.8 pct in the T6 condition. All of these improvements are attributed to the merits, including full densification of the bulk, uniform dispersion of the Al2O3 particles in the matrix, and strong binding between the Al2O3 particles and the matrix resulting from reciprocating extrusion.  相似文献   

19.
Wear corrosion of alumina particulate-reinforced 6061 aluminum matrix composites in a 3.5 wt pct NaCl solution with a revised block-on-ring wear tester has been investigated. The studies involved the effects of applied load, rotational speed, and environments (dry air and 3.5 pct NaCl solution) on the wear rates of materials. Also various specimens with Al2O3 volume fractions of 0, 10, 15, and 20 pct were employed in this work. Electrochemical measurements and electron micrographic observations were conducted to clarify the micromechanisms of wear corrosion in such metal matrix composites. Experimental results indicated that the wear rate of monolithic 6061 Al in either dry wear or wear corrosion was reduced by adding alumina reinforcements. However, the effect of volume fraction on wear rate is only minor in dry wear, while it is significant in the case of wear corrosion. Wear-corrosion tests also showed that the corrosion potential shifted to the active side and the current density for an applied potential increased with the decrease of Al2O3 volume fraction in the materials and the increase in applied load and rotational speed. Although the incorporation of reinforcement in these aluminum matrix composites was deterimental to their corrosion resistance, the influence on wear corrosion was favorable.  相似文献   

20.
The microstructure and tensile properties of two A1-3 wt pct Li-2 wt pct Cu-0.2 wt pct Zr alloys, one Cd-free and one containing 0.2 wt pct Cd, have been investigated. The Cd-free alloy remained unrecrystallized for all solutionizing treatments studied, whereas a special treatment had to be developed to prevent recrystallization during solutionizing of the 0.2 wt pct Cd alloy. In combination with cadmium, zirconium either enters into, or nucleates on, the course Al7Cu2Fe and T2 phases during high temperature annealing. This reduces the volume fraction of small coherent Al3Zr particles in the matrix which normally inhibits recrystallization. Consequently, a low temperature anneal to precipitate Al3Zr is necessary prior to high temperature solutionizing in order to prevent recrystallization in the Cd-containing alloy. Unlike its effect in lower lithium, higher copper content aluminum alloys, cadmium does not significantly affect the nucleation of the strengthening precipitates. If anything, cadmium has a detrimental effect on the age hardening response of this alloy, since it increases the formation of coarse Al-Cu-Li equilibrium phases at grain and subgrain boundaries and thus removes some of the copper and lithium from participating in the formation of the strengthening precipitates T1 and δ′. Subgrain boundary fracture occurred during tensile tests of both alloys in the unrecrystallized condition; however, transgranular fracture occurred in tests of the partially recrystallized 0.2 wt pct Cd alloy. Both types of fractures are believed due to a form of strain localization associated with precipitate free zones and shearable precipitates. Formerly with the Fracture and Fatigue Research Laboratory, Georgia Institute of Technology, Atlanta, GA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号