首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为避免传统方法制备大面积闭孔泡沫铝工艺过程的局限性,采用搅拌摩擦加工技术结合加热工艺制备闭孔泡沫铝复合材料。采用有限元软件对搅拌摩擦加工制备预制体过程的温度场进行了模拟仿真,研究了制备工艺参数对泡沫铝预制体质量的影响规律。利用光学金相显微镜对不同加工工艺参数及发泡时间条件下制备的泡沫铝孔隙率和形貌进行了分析。同时,对闭孔泡沫铝进行了准静态压缩性能试验,研究了不同孔隙率下泡沫铝的压缩性能。结果表明,与搅拌针移动速度相比,不同旋转速度对闭孔泡沫铝预制体的形貌影响更大。当搅拌针移动速度50 mm·min-1、旋转速度2000 r·min-1时,焊核区金属和夹层中的混合粉末发生了充分的塑性变形,粉末圈分布连续且均匀。模拟结果表明:搅拌摩擦加工时最高温度区域出现在搅拌针附近,呈“碗状”分布,此时温度达到最大值491℃,焊核区金属和夹层中的混合粉末发生充分塑性变形和流动,模拟结果与试验结果一致。经过680℃发泡后,泡沫铝最大孔隙率为69.3%,平均泡孔直径为Φ130μm,屈服应力为3.2 MPa,平台应力值为2.9 MPa。  相似文献   

2.
铝熔体泡沫化过程中孔结构的控制   总被引:8,自引:0,他引:8  
宋振纶  马立群 《铸造》1997,(4):9-11
在大量试验研究的基础上,探索了铝熔体泡沫过程中控制泡沫铝孔径、孔隙率等结构参数的工艺方法,研究了发泡剂加入量,搅拌及保温时间等对孔结构的影响。  相似文献   

3.
发泡工艺参数对闭孔泡沫铝胞结构的影响   总被引:3,自引:0,他引:3  
采用压缩空气法制备闭孔泡沫铝,研究空气流量、搅拌速度和发泡温度对胞结构的影响。结果表明泡沫铝的胞直径为4-11mm,密度为0.10-0.22g/cm3,孔隙率最高达96.3%;泡沫铝的胞直径随着空气流量和发泡温度的增大而增大,随搅拌速度的增大而减小,其中空气流量对胞直径的影响最显著;壁厚和结点尺寸随空气流量和搅拌速度的变化规律与胞直径相反;在相同的搅拌速度下,泡沫铝的密度随着胞直径的增大而减小且与胞直径存在对应关系,搅拌速度为600r/min时,关系式为ρ=0.0278 0.3602.e-0.132d。  相似文献   

4.
SiCP增强泡沫铝基复合材料的制备工艺研究   总被引:5,自引:1,他引:4  
将SiC颗粒增强铝基复合材料的制备技术与泡沫铝熔体发泡技术相结合,探索了制备SiC颗粒增强泡沫铝基复合材料的工艺方法。讨论了SiC颗粒与铝基体之间存在的润湿性,界面反应以及SiC颗粒在熔体中沉降等问题,通过选择合适的合金成分,对SiC颗粒进行预处理,采用特定的搅拌和发泡等一系列工艺方案成功地予以解决。在熔体发泡过程中,通过严格控制发泡温度、搅拌速度和搅拌时间等工艺参数,制得了孔隙率基本可调,SiC颗粒和孔洞分布均匀的泡沫铝样品。  相似文献   

5.
目前传统制备泡沫铝复杂成型件的方法是在预制体发泡后再进行成型,由于预制体发泡后温度降低,会造成成型缺陷.先使用不同参数进行搅拌摩擦焊制备泡沫铝预制体,然后对预制体进行680℃不同保温时间的发泡试验,总结出工艺参数对搅拌摩擦焊制备泡沫铝的影响规律.对使用最佳焊接参数制备的预制体进行热拉伸试验以确定其最佳热成型参数.结果表...  相似文献   

6.
Ca增粘熔体发泡法制备闭孔泡沫铝的研究   总被引:3,自引:1,他引:3  
研究了熔体发泡法制备闭孔泡沫铝过程中,金属钙对熔体的增粘机理以及不同钙加入量对闭孔泡沫铝孔隙率的影响。发现加入金属Ca并搅拌均匀后,主要生成金属间化合物CaAl4和CaAl2,在熔体中弥散存在,且CaAl4熔点(697℃)高于制备泡沫铝的试验温度(680℃),处于半熔化状态,因此增加了铝熔体粘度。试验近一步证实,纯铝中金属钙的加入量对闭孔泡沫铝孔隙率有很大影响,当加入量为2.5%制备所得的泡沫铝的孔隙率最高。  相似文献   

7.
采用熔体发泡法制取泡沫铝基复合材料,系统分析了稀土Er含量、搅拌时间、保温时间和发泡剂含量对孔结构的影响。对稀土Er在铝熔体中的存在形式以及在增强过程中的强化机制进行了讨论。结果表明:加入质量分数0.40%稀土,搅拌时间7 min,发泡剂的质量分数为2%,保温5 min的条件下,可以制取孔结构均匀、孔隙率高的高强度泡沫铝基复合材料。  相似文献   

8.
发泡剂TiH2颗粒在铝熔体中的分布是决定泡沫铝孔结构和性能的重要因素。利用Fluent软件对TiH2颗粒在铝熔体中的分散性进行了数值模拟,重点考察了搅拌叶片参数和搅拌速度对TiH2颗粒在铝熔体中分散性的影响。结果表明,TiH2颗粒的分散均匀性受铝熔体的径向及轴向流动的影响,与搅拌叶片参数和搅拌速度有关;当搅拌叶片层数为3、叶片长度为30cm、叶片倾斜角θ=30°、搅拌速度为50r/s时,铝熔体中TiH2颗粒的分布均匀性最好。  相似文献   

9.
复合碳酸盐作发泡剂制备泡沫铝的工艺研究   总被引:1,自引:0,他引:1  
采用熔体发泡法制取泡沫铝,利用DSC和DTG两种方法,分析了CaMg(CO3)2的热分解特性,同时系统地研究了发泡剂含量、温度及搅拌时间对泡沫铝孔结构的影响.结果表明,发泡剂加入质量分数为2%~3%,搅拌时间1 min~2 min,发泡温度为660℃~710℃的条件下,可以制取孔结构均匀、孔隙率高的泡沫铝合金.  相似文献   

10.
多相液体的搅拌是制备泡沫金属、金属基复合材料等的一种重要方法,但对搅拌条件的研究多属know—how的课题,其机理并没有完全清楚。因此首先利用水模型进行可视化试验,探讨了搅拌条件对润湿性差的颗粒的添加和分布的影响,导出了最优的搅拌条件。然后利用获得的最优条件,制备泡沫铝材料,研究其合理性和对发泡性的影响。水模拟试验时采用与六号石墨坩埚一样大小的烧杯,倒入水后放置在正方体的水槽内(水面高度一致)以消除摄影时烧杯曲面对图像的歪曲。  相似文献   

11.
陶勇 《铸造技术》2014,(11):2660-2662
以Ca Mg(CO3)2为发泡剂,Ca粉为增粘剂,ZLD 102铝硅合金为基体制备泡沫铝,探讨其工艺可行性。结果表明,以Ca Mg(CO3)2为发泡剂制备泡沫铝是可行的,其最佳发泡温度为710℃,搅拌时间为2 min,保温时间为48min。所制备泡沫铝的孔隙率可达86.42%,密度为0.36 g/cm3。  相似文献   

12.
氢化锆熔体发泡法制备小孔径泡沫铝   总被引:3,自引:0,他引:3  
以ZrH_2为发泡剂,采用熔体发泡法制备铝基小孔径泡沫铝,分析其制备过程及影响孔结构的因素;优化实验室制备泡沫铝的工艺条件;借助图形分析方法表征泡沫铝的孔径分布,并与TiH_2制备的泡沫铝进行了对比;采用改进座滴装置研究铝合金与氢化物的润湿行为.结果表明:ZrH_2较适合制备小孔径泡沫铝;优化工艺条件为:Al 650 g,增粘剂Ca 的加入量2.5%,发泡剂ZrH_2的加入量1.0%,发泡温度680 ℃,搅拌时间1.5 min,保温时间2.5 min;制备的泡沫铝孔径均匀,平均孔径小于1.5 mm;ZrH_2在铝合金中的润湿特点是导致泡沫铝孔径较小的主要原因.  相似文献   

13.
小孔径泡沫铝的制备及压缩性能研究   总被引:2,自引:0,他引:2  
在常规熔体发泡法基础上,采用添加0.5%Mg(质量分数,下同)以降低表面张力;发泡剂400 ℃,6 h+500℃,1 h氧化预处理以协调发泡剂分散均匀性与发泡过程关系;发泡搅拌60s以破碎初始气泡等措施,成功制备出了平均孔径1.3 mm、孔隙率70.5%、结构均匀的小孔径泡沫铝.泡沫铝及Al-9Si泡沫的压缩性能分析表明,随平均孔径减小,泡沫铝的屈服强度、致密化应变和能量吸收能力均明显提高,泡沫铝压缩性能随孔径减小而提高,与泡沫铝的孔结构因素及孔结构均匀性有关.  相似文献   

14.
使用氢化锆为发泡剂,通过熔体发泡法制备泡沫铝并研究其影响因素。制备工艺为:添加0.6%-1.4%的发泡剂,1.5%-3.0%Ca(质量分数)作为增粘剂,发泡温度933-1013K,搅拌时间为0.5-2.5min和保温时间为1.5-4.0min。利用XRD和SEM对泡沫铝样品进行表征,测试其力学性能。结果表明,在合适的工艺参数下能制备出孔径均匀的泡沫铝,采用氢化锆为发泡剂可以制备出平均孔径为1mm左右的泡沫铝。金属间化合物和Al2O3的存在影响熔体的粘度。泡沫铝的力学性能经历线弹性区、平台区和致密化区并表现出较高的能量吸收效率。  相似文献   

15.
《铸造技术》2019,(8):768-771
采用熔体发泡工艺,用纯铝作原料,氢化钛为发泡剂,金属钙粉为增粘剂,制备出孔结构均匀,孔隙率大于80%,孔径大于4.2mm的闭孔泡沫铝,整个工艺过程控制平稳。探讨了发泡温度、金属钙粉和氢化钛加入量及搅拌时间对泡沫铝结构的影响。结果表明,增粘剂钙粉的加入量为1.5%~2.0%,增粘温度850~860℃,搅拌时间为2.0~2.5 min,发泡剂TiH_2的加入量为1.5%~2.0%,发泡温度为680~690℃,发泡搅拌速度和时间分别为860 rpm和2.0~2.5 min,保温时间4.5~6.0 min时为最佳工艺。  相似文献   

16.
基于吹气法制备A356基泡沫铝工艺,采用高速搅拌并分批连续加入粉末的方式,避免熔体中颗粒分布不均匀的问题;采用静置吹气头通入压缩空气发泡,通过设计和控制气路,制备出不同孔径、不同壁厚、稳定的泡沫铝.结果表明A356基泡沫铝是一种典型的塑性泡沫材料,泡孔呈十四面体形状,泡壁较薄,厚度小于150μm,可控的泡孔平均直径范围很宽,为10~25mm;泡沫铝在致密化阶段的塑性变形量可达70%以上;不作任何预处理的泡沫铝在高频率声波下的吸声系数可达0.9以上;在泡沫样品后设置0~70mm空腔,其在低频率声波下的吸声性能显著提高;所制备的泡沫铝具有较好的声学性能和力学性能.  相似文献   

17.
泡沫铝合金显微组织和压缩力学性能的研究   总被引:3,自引:1,他引:3  
采用Si、Mg及Cu元素进行合金化处理,制备了几种不同力学性能的开孔泡沫铝,并通过准静态压缩实验,研究合金化对泡沫铝压缩力学行为与吸能特征的影响。实验结果表明:采用Si、Mg及Cu元素合金化处理显著改变了泡沫铝的应力-应变行为与吸能特征,使泡沫铝的屈服强度提高,吸能性大幅度上升。另外,还研究了渗流法制备工艺对泡沫铝微观组织和性能的影响,结果显示由于渗流法制备过程特殊的凝固条件,使得泡沫铝的微观组织比相同成分的铸造铝合金的组织明显粗大。  相似文献   

18.
对泡沫铝进行彩色处理可能美化外观且改善其防护性能。试验表明,泡沫铝的表面处理工艺与铝材的大致相同,在此工艺中泡沫铝的比表面对电流值的影响是关键因素。利用泡沫铝透气系数正确计算其比表面积,从而得到有效的电流值。把电流值控制在该范围内,可得到氧化膜厚度大致为15μm,且着色色泽均匀。  相似文献   

19.
用化学方法制备了Al2O3溶胶,采用溶胶-凝胶和机械搅拌的方法在TiH2表面形成了Al2O3凝胶层.进行了发泡剂的释氢实验和两步法制备泡沫铝实验.结果表明:利用铝熔胶对发泡剂进行表面预处理可有效延缓其分解时间并改善其润湿性,涂覆后TiH2可在溶体中均匀分布,从而实现两部制备工艺,获得孔隙结构比较均匀的泡沫铝样品.  相似文献   

20.
TiH2的表面处理对释氢的影响及泡沫铝孔结构的控制   总被引:1,自引:0,他引:1  
用化学方法制备了Al2O3溶胶,采用溶胶-凝胶和机械搅拌的方法在TiH2表面形成了Al2O3凝胶层.进行了发泡剂的释氢实验和两步法制备泡沫铝实验.结果表明:利用铝熔胶对发泡剂进行表面预处理可有效延缓其分解时间并改善其润湿性,涂覆后TiH2可在溶体中均匀分布,从而实现两部制备工艺,获得孔隙结构比较均匀的泡沫铝样品.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号