首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
基于参数二次规划与精细积分方法的动力弹塑性问题分析   总被引:3,自引:1,他引:2  
给出了将参数二次规划方法与精细积分方法相结合进行结构弹塑性动力响应分析的一条新途径。基于参变量变分原理与有限元参数二次规划方法建立了动力弹塑性问题的求解方程,方法对于关联与非关联问题的求解在算法上是完全一致的。对于动力非线性方程求解则进一步采用了被线性问题分析所广泛采用的精细积分方法,推导了方法在动力弹塑性问题求解上的算法列式。所给出的数值算例在验证本文理论与算法的同时,进一步证实了精细积分方法在动力学分析中所具有的各种良好性态。  相似文献   

2.
刘林 《振动与冲击》1990,9(1):59-64
对于结构塑性动力响应问题,一般的是先从静态极限分析的完全解出发,假设其速度场,然后根据各种条件进行求解。本文以圆板塑性动力响应问题为例,给出一种不同的求解方法,即联合运用拉普拉斯变换和加权余量法进行分析和求解。先通过拉普拉斯变换将薄板的动力问题转化为静力问题,然后根据弯矩 M 和挠度 w 的边界条件分别假设试函数,再应用加权余量法进行求解。  相似文献   

3.
研究提出一种Hoek-Brown(H-B)准则应变软化模型的有限元数值实现方法。分析当前不同脆塑性计算方法的合理性,发现塑性位势跌落可正确计算岩石不同类型破坏,而偏应力等比例跌落和最小主应力不变跌落均存在不足。在此基础上,推导写出基于塑性位势跌落的H-B准则脆塑性隐式本构积分算法,及H-B准则理想弹塑性隐式本构积分算法,并采用一系列应力跌落-塑性流动,将H-B准则应变软化模型嵌入有限元软件ABAQUS中。比较应变软化圆隧围岩收敛位移及应力分布的解析解与本文有限元解,发现二者吻合良好,验证了所建H-B准则应变软化模型的正确性。对某薄上覆盖岩层高内水压输水隧洞工程的计算结果表明,相较理想弹塑性模型,所建应变软化模型可正确反映隧洞顶部围岩塑性区贯通引起的整体结构失稳破坏现象,为工程选择衬砌方案提供依据。  相似文献   

4.
非线性结构动力方程求解的显式差分格式的特性分析   总被引:5,自引:1,他引:4  
本文针对软化非线性结构体系动力方程,分析了作者推导出的求解方程的显式差分格式的收敛性及稳定性,分别给出了结构体系处于非线性正刚度及屈服后的负刚度反应阶段时显式差分格式的稳定条件。稳定性分析结果表明,只要结构体系处于初始反应的粘-弹性阶段时显式差分格式满足稳定性条件,则可以保证软化非线性结构体系反应求解的整个过程中格式的计算稳定性。  相似文献   

5.
钢筋混凝土梁在荷载的作用下,荷载-挠度呈现非线性变化趋势.如果采用对曲率的二次积分法求挠度不能给出精确解。对于钢筋进入屈服后,产生塑性铰以后的钢筋混凝土结构,不再适合曲率二次积分法求解挠度。本文基于求解弯曲变形的共轭梁法,同时采用坂静雄建议采用的塑性铰区的长度计算方法,对该结构塑性区外的梁部分弹性卸载采用增量法计算。得到该结构模型从弹性线性到弹性非线型再到破坏全过程的挠度数值计算方法,并编制相应的电算程序。最后用悬臂梁为例,通过程序得出相应的荷载-挠度图,并比较其配筋率参数引起的变化,发现和实际相符。  相似文献   

6.
陈朝晖  陶宇宸  何敏 《工程力学》2021,38(11):57-65
大跨、高层等柔性结构,其动力响应往往表现出大位移、大转动等非线性特征。动力非线性问题的分析关键在于运动方程的高效稳定求解,以及单元大转动产生的结点力增量的有效计算。动力时程分析通常采用直接积分法,但对于强非线性动力问题,直接积分法难以兼顾计算精度与稳定性。该文基于几何非线性分析的刚体准则,针对杆件结构大转动小应变的非线性问题,提出了一种新型空间杆系结构动力非线性分析的刚体准则法。该方法采用满足刚体准则的空间非线性梁单元,结合HHT-α法求解结构运动方程,并将刚体准则植入动力增量方程的迭代求解过程以计算结点力增量。通过典型柔性框架算例结果表明,该文方法可以有效分析柔性框架结构的强动力非线性行为。与高精度单元相比,该文采用的单元刚度矩阵构造简明,计算过程简洁;与商业软件所用方法相比,单元数和迭代步少,精度高,适于工程应用。  相似文献   

7.
刚/粘塑性梁的强迫振动   总被引:1,自引:1,他引:0  
本文依据粘塑性梁强迫振动的非齐次方程与非线性本构方程,提出采用分离变量的位移方法求解,获得该问题的应力和位移解.  相似文献   

8.
论文基于双剪统一强度准则应变软化模型对圆形隧道稳定性的分析,提出一种简单的数值计算方法来对围岩进行弹塑性分析。该文采用差分法,基于广义形式的双剪应力屈服准则,并采用相关联流动法则,建立本构方程。对于应变软化模型,该文选定塑性应变增量作为软化参数,并且假设强度参数随软化参数成线性函数关系。弹性区的解答引用拉梅解答,而求解塑性区的解答时,将塑性区分成很多微元圆环,并假设每个圆环的径向应力?r沿半径向内均匀递减;其次,建立每个微元圆环的平衡微分方程、本构方程、几何方程及相邻两微元之间的应力增量和应变增量的关系。从弹塑性交界面处的塑性区最外一个圆环开始,求解出每一个微元圆环的解答。并且利用MATLAB进行编程求解出最终的结果:应力场、应变场、径向位移场的数值解。此外还分析讨论了中间主应力影响系数b、软化参数临界值η*对解答的影响,并分析了影响塑性区半径的因素。  相似文献   

9.
线性约束优化问题一类算法   总被引:2,自引:0,他引:2  
本文基于内点算法思想,给出一类线性约束优化问题的算法,并用于求解线性规划,线性分式规划,二次规划等线性约束非线性规划问题。  相似文献   

10.
徐加初  张勇 《工程力学》2011,(1):150-156
该文对爆炸冲击作用下夹层开顶扁球壳的非线性轴对称动力稳定性问题进行研究.基于Reissner假设和Hamilton原理,得到了夹层开顶扁球壳在冲击载荷作用下的非线性动力控制方程;采用Galerkin方法对非线性动力控制方程进行求解,得到以刚性中心位移表达的非线性动力响应方程,并应用Runge-Kutta方法进行数值求解...  相似文献   

11.
A new solution approach, based on Tikhonov regularization on the Fredholm integral equations of the first kind, is proposed to find the approximate solutions of the strain softening problems. In this approach, the consistency condition is regularized with the Tikhonov stabilizers along with a regularization parameter, and the internal variable increments are solved from the resulting Euler's equations. It is shown that, as the regularization parameter is increased, the solutions converge to a unique one. A nonlocal yield condition and a nonlocal return mapping algorithm are proposed to carry out the integration of constitutive equations in the time and spatial domains. A global plastic dissipation principle is proposed to relax the classical local plastic dissipation postulate. Numerical examples show that the proposed approach leads to objective, mesh‐independent solutions of the softening‐induced localization problems. A comparison of the results from the proposed approach with those from the gradient‐dependent plasticity model shows that the two models give close solutions.  相似文献   

12.
The problem of small‐deformation, rate‐independent elastoplasticity is treated using convex programming theory and algorithms. A finite‐step variational formulation is first derived after which the relevant potential is discretized in space and subsequently viewed as the Lagrangian associated with a convex mathematical program. Next, an algorithm, based on the classical primal–dual interior point method, is developed. Several key modifications to the conventional implementation of this algorithm are made to fully exploit the nature of the common elastoplastic boundary value problem. The resulting method is compared to state‐of‐the‐art elastoplastic procedures for which both similarities and differences are found. Finally, a number of examples are solved, demonstrating the capabilities of the algorithm when applied to standard perfect plasticity, hardening multisurface plasticity, and problems involving softening. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
This work outlines a theoretical and computational framework of gradient plasticity based on a rigorous exploitation of mixed variational principles. In contrast to classical local approaches to plasticity based on locally evolving internal variables, order parameter fields are taken into account governed by additional balance‐type PDEs including micro‐structural boundary conditions. This incorporates non‐local plastic effects based on length scales, which reflect properties of the material micro‐structure. We develop a unified variational framework based on mixed saddle point principles for the evolution problem of gradient plasticity, which is outlined for the simple model problem of von Mises plasticity with gradient‐extended hardening/softening response. The mixed variational structure includes the hardening/softening variable itself as well as its dual driving force. The numerical implementation exploits the underlying variational structure, yielding a canonical symmetric structure of the monolithic problem. It results in a novel finite element (FE) design of the coupled problem incorporating a long‐range hardening/softening parameter and its dual driving force. This allows a straightforward local definition of plastic loading‐unloading driven by the long‐range fields, providing very robust FE implementations of gradient plasticity. This includes a rational method for the definition of elastic‐plastic‐boundaries in gradient plasticity along with a post‐processor that defines the plastic variables in the elastic range. We discuss alternative mixed FE designs of the coupled problem, including a local‐global solution strategy of short‐range and long‐range fields. This includes several new aspects, such as extended Q1P0‐type and Mini‐type finite elements for gradient plasticity. All methods are derived in a rigorous format from variational principles. Numerical benchmarks address advantages and disadvantages of alternative FE designs, and provide a guide for the evaluation of simple and robust schemes for variational gradient plasticity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

In this study we present an efficient global optimization method, DIviding RECTangle (DIRECT) algorithm, for parametric analysis of dynamic systems. In a bounded constrained problem the DIRECT algorithm explores multiple potentially optimal subspaces in one search. The algorithm also eliminates the need for derivative calculations which are required in some efficient gradient‐based methods. In this study the first optimization example is to find the dynamic parameters of a tennis racket. The second example is a biomechanical parametric study of a heel‐toe running model governed by six factors. The effectiveness of the DIRECT algorithm is compared with a genetic algorithm in an analysis of heel‐toe running. The result shows that the DIRECT algorithm obtains an improved result in 83% less execution time. It is demonstrated that the straightforward DIRECT algorithm provides a general procedure for solving global optimization problems efficiently and confidently.  相似文献   

15.
In this paper four multiple scale methods are proposed. The meshless hierarchical partition of unity is used as a multiple scale basis. The multiple scale analysis with the introduction of a dilation parameter to perform multiresolution analysis is discussed. The multiple field based on a 1‐D gradient plasticity theory with material length scale is also proposed to remove the mesh dependency difficulty in softening/localization problems. A non‐local (smoothing) particle integration procedure with its multiple scale analysis are then developed. These techniques are described in the context of the reproducing kernel particle method. Results are presented for elastic‐plastic one‐dimensional problems and 2‐D large deformation strain localization problems to illustrate the effectiveness of these methods. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
In this work, a linear hexahedral element based on an assumed strain finite element technique is presented for the solution of plasticity problems. The element stems from the Nodally Integrated Continuum Element (NICE) formulation and its extensions. Assumed gradient operators are derived via nodal integration from the kinematic‐weighted residual; the degrees of freedom are only the displacements at the nodes. The adopted constitutive model is the classical associative von Mises plasticity model with isotropic and kinematic hardening; in particular, a double‐step midpoint integration algorithm is adopted for the integration and solution of the relevant nonlinear evolution equations. Efficiency of the proposed method is assessed through simple benchmark problems and comparison with reference solutions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A mesh-independent finite element method for elastoplastic problems with softening is proposed. The regularization of the boundary value problem is achieved introducing in the yield function the second order gradient of the plastic multiplier. The backward-difference integrated finite-step problem enriched with the gradient term is given a variational formulation where the consitutive equations are treated in weak form as well as the other field equations. A predictor–corrector scheme is proposed for the solution of the non-linear algebraic problem resulting from the finite element discretization of the functional. The expression of the consistent tangent matrix is provided and the corrector phase is formulated as a Linear Complementarity Problem. The effectiveness of the proposed methodology is verified by one- and two-dimensional tests.  相似文献   

18.
针对第一部分发展的、能够合理描述循环稳定材料棘轮行为的粘塑性本构模型,详细讨论该模型的数值计算方法和有限元实现。在径向回退(RadialReturn)和向后欧拉积分方法的基础上,结合连续迭代(SuccessiveSubstitution)方法,推导并建立了针对循环粘塑性本构模型的、新的隐式应力积分算法。为了本构模型在大型有限元分析程序(如ABAQUS等)中的实现,针对有限元的整体节点迭代计算,推导和确立了一个新的、考虑率相关塑性的一致切线刚度矩阵(ConsistentTangentModulus)表达式。通过对一些算例的有限元分析,讨论了建立的隐式应力积分算法的优越性,同时对特定构件的棘轮行为进行了数值模拟,进而检验了有限元实现的合理性和必要性。  相似文献   

19.
Microcracking, damage and subsequent softening in materials introduce higher levels of nonlinearity than those for materials characterized by nonlinear elastic or classical plasticity models. Hènce, implementation of such advanced models that allow for the foregoing effects require special considerations in terms of the analysis of the characteristics of the model, convergence during plastic deformations, and time integration schemes that consider the nonlinearity.This paper describes a damage model, a special scheme involving drift correction and the generalized time finite element (GTFEM) scheme for time integration for dynamic analysis. The main objective is to examine the model and develop schemes that can lead to consistent and reliable predictions from computational procedures. Toward this aim, (1) the damage model is analyzed with respect to its convergence behavior with mesh refinement, (2) a special drift correct scheme is implemented for the plasticity based model, (3) the generalized time finite element method (GTFEM) is implemented in the nonlinear dynamic finite element procedure for time integration and compared with the Newmark method, and (4) the damage model, the drift correction scheme and the GTFEM are verified by solution of representative static and dynamic problems involving a material (concrete) that experiences damage and softening, including verification with respect to behavior of concrete in the laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号