首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After a high-temperature reduction (HTR) at 773 K, TiO2-supported Au became very active for CO oxidation at 313 K and was an order of magnitude more active than SiO2-supported Au, whereas a low-temperature reduction (LTR) at 473 K produced a Au/TiO2 catalyst with very low activity. A HTR step followed by calcination at 673 K and a LTR step gave the most active Au/TiO2 catalyst of all, which was 100-fold more active at 313 K than a typical 2% Pd/Al2O3 catalyst and was stable above 400 K whereas a sharp decrease in activity occurred with the other Au/TiO2 (HTR) sample. With a feed of 5% CO, 5% O2 in He, almost 40% of the CO was converted at 313 K and essentially all the CO was oxidized at 413 K over the best Au/TiO2 catalyst at a space velocity of 333 h–1 based on CO + O2. Half the chloride in the Au precursor was retained in the Au/TiO2 (LTR) sample whereas only 16% was retained in the other three catalysts; this may be one reason for the low activity of the Au/TiO2 (LTR) sample. The reaction order on O2 was approximately 0.4 between 310 and 360 K, while that on CO varied from 0.2 to 0.6. The chemistry associated with this high activity is not yet known but is presently attributed to a synergistic interaction between gold and titania.  相似文献   

2.
TiO2 impregnated with AuCl3 was subjected to different pretreatments and then characterized by XPS and DRS. After drying at 298 K under vacuum, the catalyst contains highly dispersed, nonmetallic Au species; whereas drying at 393 K in an oven caused the Au to be partially reduced and agglomerate. Further treatments of the oven-dried sample at higher temperatures resulted in the disappearance of Au signals in XPS except the one after a HTR/C/LTR (high-temperature reduction/calcination/low-temperature reduction) sequence. The high-temperature reduction at 773 K shifted the plasmon resonance peak in DRS to higher wavelength, and the following C and LTR treatment did not change the peak position. This peak shifting is interpreted as a change in the electronic status of the Au. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The origin of CO oxidation performance variations between three different supported Au catalysts (Au/CeO2, Au/Al2O3, Au/TiO2) was examined by in situ XAFS and DRIFTS measurements. All samples were prepared identically, by deposition-precipitation of an aqueous Au(III) complex with urea, and contained the same gold loading (~1 wt %). The as-prepared supported Au(III) precursors exhibited different reduction behaviour during exposure to the CO/O2/He reaction mixture at 298 K. The reducibility of the Au(III) precursor was found to decrease as a function of the support material in the order: titania > ceria > alumina. The as-prepared samples were inactive catalysts, but Au/TiO2 and Au/CeO2 developed catalytic activity as the reduction of Au(III) to metallic Au proceeded. Au/Al2O3 remained inactive. The developed catalytic CO oxidation activity at 298 K varied as a function of the support as follows: titania > ceria > alumina ~ 0. The EXAFS of samples pretreated in air at 773 K and in H2 at 573 K reveals the presence of only metallic particles for Au/TiO2 and Au/Al2O3. Au(III) supported on CeO2 remains unreduced after calcination, but reduces during the treatment with H2. CO oxidation experiments performed at 298 K with the activated samples show that the presence of metallic gold is necessary to obtain active catalysts (Au/CeO2 is not active after calcination) and that the reducible supports facilitate the genesis of active catalysts, while metallic gold particles on alumina are not active.  相似文献   

4.
The adsorption and reaction of CO, CO2 and O2 on TiO2 and Au/TiO2 have been studied using a mass spectrometric method which can detect processes occurring on a time scale of seconds. Adsorption of CO on TiO2 at 300 K is rapidly reversible and less on reduced samples than oxidised ones indicating that the adsorption sites are oxide ions. The amount adsorbed reversibly on reduced Au/TiO2 is less still, consistent with enhanced reduction, but additional amounts adsorb irreversibly at a slower rate. The amount of CO2 adsorbed under similar conditions is also greater on TiO2 than reduced Au/TiO2 and approximately one order of magnitude greater than that of CO. However, adsorption of O2 is undetectable on the time scale of the measurement. Exposure of Au/TiO2 to mixtures of CO and O2 results in near instantaneous generation of CO2 although its appearance is attenuated by adsorption. Adsorption of CO occurs concurrently in a way similar to that seen with CO alone except that the amount of the more slowly adsorbed form seems less. This suggests that it is the form utilised in catalysis. Oxygen uptake beyond that generating CO2 is appreciable during the initial stages of exposure to reaction mixtures and this capacity is enhanced if one or other reactant is removed and then reintroduced, possibly due to the generation of reducible interface sites. It is concluded that the remarkable activity of Au/TiO2 for CO oxidation at ambient temperature resides in a very high turnover frequency on sites at the interface between the metal and oxide. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Catalytic activity of a 1 wt% Au/TiO2 catalyst is markedly improved by loading a large amount of FeOx, on which the oxidation of CO in excess H2 is selectively promoted at temperature lower than 60 °C. Oxidation of CO with O2 on the FeOx/Au/TiO2 catalyst is markedly enhanced by H2, and H2O moisture also enhances the oxidation of CO but its effect is not so large as the promotion by H2. We deduced that activation of Au/TiO2 catalyst by loading FeOx is not caused by the size effect of Au particles but a new reaction path via hydroxyl carbonyl intermediate is responsible for the superior activity of the FeOx/Au/TiO2 catalyst.  相似文献   

6.
Very tiny Au particles on TiO2 show excellent activity and selectivity in a number of oxidation reactions. We have studied the vapor deposition of Au onto a TiO2(110) surface using XPS, LEIS, LEED and TPD and found that we can prepare Au islands with controlled thicknesses from one to several monolayers. In order to understand at the atomic level the unusual catalytic activity in oxidation reactions of this system, we have studied oxygen adsorption on Au/TiO2(110) as a function of Au island thickness, and have measured the titration of this adsorbed oxygen with CO gas to yield CO2, as function of Au island thickness, CO pressure and temperature. A hot filament was used to dose gaseous oxygen atoms. TPD results show higher O2 desorption temperatures (741 K) from ultrathin gold particles on TiO2(110) than from thicker particles (545 K). This implies that Oa bonds much more strongly to ultrathin islands of Au. Thus from Brønsted relations, ultrathin gold particles should be able to dissociatively adsorb O2 more readily than thick gold particles. Our studies of the titration reaction of oxygen adatoms with CO (to produce CO2) show that this reaction is extremely rapid at room temperature, but its rate is slightly slower for the thinnest Au islands. Thus the association reaction (COg + Oa → CO2,g) gets faster as the oxygen adsorption strength decreases, again as expected from Brønsted relations. For islands of about two atomic layers thickness, the rate increases slowly with temperature, with an apparent activation energy of 11.4 ± 2.8 kJ/mol, and shows a first‐order rate in CO pressure and oxygen coverage, similar to bulk Au(110).  相似文献   

7.
In order to elucidate the role of the contact structure between gold and metal oxide support in low-temperature CO oxidation, a mechanical mixture of colloidal gold with TiO2 powder was prepared and calcined at different temperatures. The sample calcined at 473 K, which is composed of spherical gold particles with a mean diameter of 5.1 nm and TiO2 powder, is poorly active for CO oxidation at temperatures up to 473 K. The catalytic activity appreciably increases with an increase in calcination temperature up to 873 K even though gold particles grow to larger ones, reaching a level with almost the same turnover frequency as that of Au/TiO2 prepared by a deposition–precipitation method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The oxidation of carbon monoxide in the presence of various concentrations of molecular hydrogen has been studied over a Au/TiO2 reference catalyst by combining diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and mass spectrometry. It is shown for the first time that H2 enhances the CO oxidation rate on Au/TiO2 without leading to any major loss of selectivity. Increasing the H2 pressure induces higher CO and H2 oxidation rates. Under H2-free conditions, the surface species detected are Auδ+–CO, Ti4+–CO, carbon dioxide and carbonates. Upon the addition of H2, Au0–CO, water and hydroxyl groups become the main surface species. The occurrence of a preferential CO oxidation mechanism involving HxOy species under the present experimental conditions is proposed.  相似文献   

9.
Mesoporous Au/TiO2 Catalysts for Low Temperature CO Oxidation   总被引:1,自引:0,他引:1  
The activity and stability of structurally well defined mesoporous Au/TiO2 catalysts with different support morphologies and pore sizes for low temperature CO oxidation was investigated by kinetic measurements and in-situ IR spectroscopy. The resulting catalysts with Au particle sizes of ∼3 nm exhibit a high activity for CO oxidation, similar to or exceeding that of highly active standard Au/TiO2 catalysts with similar size Au nanoparticles and loading, and a significantly lower tendency for deactivation. Possible reasons for the improved performance of these catalysts are discussed.  相似文献   

10.
Au/TiO2 is highly active for CO oxidation, but it often suffers from sintering in high-temperature environments. In this work, we report on a novel design of gold catalysts, in which pre-formed Au/TiO2 catalysts were post decorated by amorphous SiO2 to suppress the agglomeration of gold particles. Even after being aged in O2–He at 700 °C, the SiO2-decorated Au/TiO2 was still active for CO oxidation at ambient temperature.  相似文献   

11.
By simulating CO and H2 oxidations at thermodynamic equilibrium and studying the catalytic oxidations over Au/TiO2, preferential oxidation of CO in a H2 rich stream (PROX) was investigated. During the simulation, at least two cases under different gaseous feeds, H2/CO/O2/N2 = 50/1/0.5/48.5 or 50/1/1/48 (vol.%) were examined under the assumption of an ideal gas and one atmosphere pressure in the reactor. It was found that the addition of 1% O2 (the latter case) effectively reduced CO concentration to less than 100 ppm in the temperature range between 0 and 90 °C. This range narrowed to between 0 and 50 °C with the addition of 3% H2O and 15% CO2 in the feed. The thermodynamic study suggests that 1% CO in a H2 rich system can be decreased to below 100 ppm within those low temperature ranges, if there is no substantial adsorptions onto the catalyst surface and the reactions rapidly reach equilibrium. During the catalysis reaction study, a well-pH adjusted Au/TiO2 catalyst was found very active for PROX. CO conversions at the reactor outlet were close to those at equilibrium. Au/TiO2 used in this work was prepared via deposition-precipitation (DP) method. The influence of gold colloid pH (at 6) adjustment time on gold loading, gold particle size and chloride residue on TiO2 surface was detected by atomic absorption (AA), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). A pH adjustment time of at least 6 h for the preparation of gold colloids at room temperature was demonstrated to be essential for the high catalytic activity of Au/TiO2. This was attributed to the smaller gold particle and the less chloride residue on the catalyst surface.  相似文献   

12.
Au-based catalysts, known for ambient temperature CO oxidation, have to provide stable performance of up to 5000 h in order to be commercially applicable in automotive fuel cells. In this report, the on-line deactivation characteristics of Au/TiO2 in unconventional PROX conditions are discussed. As opposed to CO removal from air, results in this report suggests that carbonates have a minor effect on deactivation of Au/TiO2 in dry H2-rich conditions. Also, no conclusive correlation between surface hydration and deactivation was observed. Rather, deactivation appeared to have occurred as a result of an intrinsic transformation in the oxidation state of the active species in the reducing operating conditions; a process which was reversible in an oxidizing atmosphere.  相似文献   

13.
In this paper, the CuO/TiO2 catalysts prepared by the deposition–precipitation (DP) method were extensively investigated for CO oxidation reaction. The structural characters of the CuO/TiO2 catalysts were comparatively investigated by TG-DTA, XRD, and XPS measurements. It was shown that the catalytic behavior of CuO/TiO2 catalysts greatly depended on the TiO2-support calcination temperature, the CuO loading amount and the CuO/TiO2 catalysts calcination temperature. CuO supported on the anatase phase of TiO2-support calcined at 400 °C showed better catalytic activity than those supported on TiO2 calcined at 500 and 700 °C. Among all our investigated catalysts with CuO loading from 2% to 12%, the catalyst with 8 wt% CuO loading exhibited the highest catalytic activity. The optimum calcination temperature of the CuO/TiO2 catalysts was 300 °C. The XRD results indicated that the catalytic activity of the CuO/TiO2 catalysts was related to the crystal phase and particle size of TiO2 support and CuO active component.  相似文献   

14.
The Au/MnO x /TiO2 catalyst was used for the photocatalytic oxidation of carbon monoxide. The catalytic activity of Au/MnO x /TiO2 with low concentration of manganese (3–7 mol%) was much higher than that of Au/TiO2. The surface of Au/MnO x /TiO2 was characterized by XPS and Raman spectroscopy. While the main state of manganese in 13.8 mol% MnO x /TiO2 was Mn4+ species, Mn3+ was the dominant species in the samples with below 6.5 mol% manganese. Raman spectroscopy revealed that the interaction between the MnO x and TiO2 form Mn–O–Ti species in which the state of manganese was Mn3+. The Au particles also interacted with both MnO x and TiO2 to modify the surface of them. In the case of the Au species, low loading of manganese produced the metallic Au0 and perimeter interfacial Auδ+, whereas high loading showed the coexistence of three components which were metallic Au0, perimeter interfacial Auδ+, and oxidic Au3+. The catalytic active component was the metallic Au0 and perimeter interfacial Auδ+ species, which were dispersed on TiO2 and Mn3+/TiO2.  相似文献   

15.
FTIR spectra of a Ru-RuOx/TiO2 catalyst obtained on co-adsorption of CO, CO2 and H2 in the temperature range of 300–500 K were found to be the sum total of corresponding spectra observed during methanation of individual oxides. The two oxides compete for metal sites and at each temperature they reacted simultaneously to form distinct transient Ru(CO)n type species even though the nature, the stability and the reactivity of these species were different in the two cases. The monocarbonyl species formed during adsorption/reaction of CO alone or of CO + H2 were bonded more strongly than those formed during CO2 + H2 reaction.  相似文献   

16.
The adsorption of propene on rutile TiO2(110) and on gold islands dispersed on TiO2(110) [Au/TiO2(110)], both at 120 K, has been studied using temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and He+ low energy ion scattering spectroscopy (LEIS). Propene adsorbs on both TiO2(110) and Au/TiO2(110), with desorption peak temperatures at low coverage of 190 and 240 K, respectively. When only 16% of the TiO2(110) surface is covered by gold islands [16% Au/TiO2(110)], moderate propene doses populate both the 240 and 190 K TPD peaks, in that order. The 190 K peak, seen also without Au, is due to propene bound to bare Ti sites. The 240 K peak is attributed to propene adsorbed to Ti sites at the edges of gold islands. Tiny doses of propene to the 16% Au/TiO2(110) surface give this a 240 K TPD peak but no 190 K feature, showing that the propene is mobile on TiO2(110). A TPD feature at 150 K, which is more prominent at higher Au coverages and higher propene doses, is due to propene bound only to metallic Au islands. Propene desorption shows additional intensity at 265-310 K when the gold islands are only one atom thick, due to propene adsorbed on 2D Au islands or at Ti sites near their edges.  相似文献   

17.
Titania-supported Au catalysts were given both low temperature reduction and high temperature reduction at 473 and 773 K, respectively, and their adsorption and catalytic properties were compared to identically pretreated Pt/TiO2 catalysts and pure TiO2 samples as well as Au/SiO2 catalysts. This was done to determine whether a reaction model proposed for methanol synthesis over metals dispersed on Zn, Sr and Th oxides could also explain the high activities observed in hydrogenation reactions over MSI (Metal-Support Interaction) catalysts such as Pt/TiO2. This model invokes O vacancies on the oxide support surface, formed by electron transfer from the oxide to the metal across Schottky junctions established at the metal-support interface, as the active sites in this reaction. The similar work functions of Pt and Au should establish similar vacancy concentrations, and O2 chemisorption indicated their presence. However, these Au catalysts were completely inactive for CO and acetone hydrogenation, and ethylene hydrogenation rates were lower on the supported Au catalysts than on the supports alone. Consequently, this model cannot explain the high rate of the two former reactions over TiO2-supported Pt although it does not contradict models invoking specialinterfacial sites.  相似文献   

18.
The NOx storage and reduction (NSR) catalysts Pt/K/TiO2–ZrO2 were prepared by an impregnation method. The techniques of XRD, NH3-TPD, CO2-TPD, H2-TPR and in situDRIFTS were employed to investigate their NOx storage behavior and sulfur-resisting performance. It is revealed that the storage capacity and sulfur-resisting ability of these catalysts depend strongly on the calcination temperature of the support. The catalyst with theist support calcined at 500 °C, exhibits the largest specific surface area but the lowest storage capacity. With increasing calcination temperature, the NOx storage capacity of the catalyst improves greatly, but the sulfur-resisting ability of the catalyst decreases. In situ DRIFTS results show that free nitrate species and bulk sulfates are the main storage and sulfation species, respectively, for all the catalysts studied. The CO2-TPD results indicate that the decomposition performance of K2CO3 is largely determined by the surface property of the TiO2–ZrO2 support. The interaction between the surface hydroxyl of the support and K2CO3 promotes the decomposition of K2CO3 to form –OK groups bound to the support, leading to low NOx storage capacity but high sulfur-resisting ability, while the interaction between the highly dispersed K2CO3 species and Lewis acid sites gives rise to high NOx storage capacity but decreased sulfur-resisting ability. The optimal calcination temperature of TiO2–ZrO2 support is 650 °C.  相似文献   

19.
The Au/MnOx-CeO2 catalysts used for CO preferential oxidation were prepared by deposition-precipitation with ultrasonic assistance. The effect of calcination temperature (150-350 °C) on the structures and catalytic performance of the catalysts was systematically investigated. It is found that the catalyst Au/MnOx-CeO2 calcined at 250 °C exhibits the best catalytic performance, giving not only the highest CO conversion of 90.9% but also the highest selectivity of oxygen to CO2 at 120 °C. The results of XRD, TEM and XPS indicate that this catalyst possesses the smallest particle size, the highest dispersion of Au species and the largest amount of surface adsorbed oxygen species, which are favorable to CO oxidation. The H2-TPR results reveal that the selectivity of oxygen to CO2 is mainly determined by the reducibility of Au species in the catalysts. The strong interaction between Au species and the support in Au/MnOx-CeO2-250 decreases its capability for H2 dissociation and oxidation, leading to high selectivity of oxygen to CO2.  相似文献   

20.
The interaction of Au with oxide supports has been found to play a vital role in determining the unique properties of Au catalysts. In this study, the binding of Au with titania was investigated using scanning tunneling microscopy (STM) and ultra-violet photoemission spectroscopy (UPS). Two support systems, rutile TiO2(110) and an ordered TiO x /Mo(112) thin film were used. On a highly defective TiO2(110) surface, Au particles were found to bind first on the oxygen vacancy sites. Complete wetting of the oxide by Au was found on an ordered and reduced Ti3+O x /Mo(112) film to form two ordered structures, a (1 × 1)-monolayer and a (1 × 3)-Au/TiO x /Mo(112) bi-layer. Detailed STM images confirm the proposed structural models. Reduced titania was found to enhance the binding of Au with Ti sites and promote electron donation from Tiδ+ to Au, leading to electron-rich Au and to enhanced CO bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号