首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monocytes adherent to implanted biomaterials differentiate into macrophages while synthesizing large amounts of degradative enzymes, including cholesterol esterase (CE), which previously has been shown to degrade poly(urethane)s. Human peripheral blood monocytes were cultured on tissue culture grade polystyrene (PS), and two model poly(urethane)s were synthesized from (1) polycaprolactone (PCL) and (2) polytetramethylene oxide (PTMO), both with 2,4-toluene diisocyanate (TDI) and ethylene diamine (ED). The increase in CE and total protein per cell were measured on days 8 and 28 in culture and normalized to the DNA content per cell. At day 8 there consistently were fewer cells remaining on the PTMO-based polymer than on the PCL-based polymer or the PS (p < 0.05). When comparing day 28 to day 8, there was more CE activity and protein per cell on all materials. However, there was a disproportionate synthesis of CE per mg of total protein on PS and TDI/PCL/ED whereas on PTMO there was not. Significantly, there was more protein and CE per cell on PTMO than on PS or TDI/PCL/ED (p < 0.05). This in vitro model system of the chronic phase of inflammation has shown that it is possible to culture monocytes for a month and assess the material surface itself as a potent activator of the differentiation into macrophages without secondary stimulation. Since CE has been shown to degrade poly(ether and ester)-based poly(urethane)s, the differential production of this enzyme relative to the total protein on different surfaces may impact on the potential long-term biostability of an implanted material.  相似文献   

2.
Nucleated erythroid cells isolated from the spleens of anemic mice were used to investigate the processing of the polyadenylic acid region of globin mRNA. Cells were labeled in media containing [3H] adenosine and transferred to media containing no radioactive precursor and incubated further in the presence or absence of actinomycin D. After various times following the transfer of the cells, globin mRNA was isolated using a combination of oligo(dT)-cellulose affinity chromatography, sucrose density centrifugation, and globin cDNA (the complementary DNA copy of globin mRNA)-cellulose affinity chromatography. The size of the poly(A) region was determined by polyacrylamide gel electrophoresis of the T1 and pancreatic RNase-resistant fragments. The prelabeled poly(A) region which initially comprises approximately 150 adenylate residues was found to become shorter with time, both in cells incubated in medium containing no radioactive precursor and in the presence of actinomycin D. After 9 h of incubation in the presence of actinomycin D, two major size classes of poly(A) were observed, one containing 35 to 45 adenylic acid residues and the other containing 55 to 65 residues. These two size classes are similar to those found in circulating reticulocytes suggesting that the poly(A) shortening observed in these cell incubation studies is similar to that which occurs in vivo. Two protein synthesis inhibitors, emetine and cycloheximide, were investigated with respect to their effect on poly(A) shortening. Neither drug inhibited the shortening of the poly(A) region of globin mRNA, suggesting that protein synthesis is not required for this process to occur.  相似文献   

3.
Cyclic beta-(1,2)-glucans are synthesized by members of the Rhizobiaceae family through protein-linked oligosaccharides as intermediates. The protein moiety is a large inner membrane molecule of about 319 kDa. In Agrobacterium tumefaciens and in Rhizobium meliloti the protein is termed ChvB and NdvB, respectively. Inner membranes of R. meliloti 102F34 and A. tumefaciens A348 were first incubated with UDP-[14C]Glc and then solubilized with Triton X-100 and analyzed by polyacrylamide gel electrophoresis under native conditions. A radioactive band corresponding to the 319-kDa protein was detected in both bacteria. Triton-solubilized inner membranes of A. tumefaciens were submitted to native electrophoresis and then assayed for oligosaccharide-protein intermediate formation in situ by incubating the gel with UDP-[14C]Glc. A [14C]glucose-labeled protein with an electrophoretic mobility identical to that corresponding to the 319-kDa [14C]glucan protein intermediate was detected. In addition, protein-linked radioactivity was partially chased when the gel was incubated with unlabeled UDP-Glc. A heterogeneous family of cyclic beta-(1,2)-glucans was formed upon incubation of the gel portion containing the 319-kDa protein intermediate with UDP-[14C]Glc. A protein with an electrophoretic behavior similar to the 319-kDa protein intermediate was "in gel" labeled by using Triton-solubilized inner membranes of an A. tumefaciens exoC mutant, which contains a protein intermediate without nascent glucan. These results indicate that initiation (protein glucosylation), elongation, and cyclization were catalyzed in situ. Therefore, the three enzymatic activities detected in situ reside in a unique protein component (i.e., cyclic beta-(1,2)-glucan synthase). It is suggested that the protein component is the 319-kDa protein intermediate, which might catalyze the overall cyclic beta-(1,2)-glucan synthesis.  相似文献   

4.
In the present work, the effects of GnRH on the translation (by [14C]leucine incorporation; [14C]Leu-LH) and the glycosylation of LH by rat pituitary cells in primary culture were established. The use of specific markers as radioactive precursors made it possible to discriminate the action of the neurohormone on proximal glycosylation (by[3H]mannose incorporation; [3H]Man-LH) as well as distal glycosylation (by [3H]galactose incorporation; [3H]Gal-LH) in the course of synthesis and release of LH. Pituitary cells from ovariectomized adult rats were incubated for different periods between 0 and 5 h in medium containing [14C]Leu plus [3H]Man or [14C]Leu plus [3H]Gal with or without 10 nM GnRH. GnRH increased synthesis and release of newly synthesized LH. The magnitude of the stimulatory effect on the kinetics of [14C]Leu (slope = 63.58; 158% of control) and [3H]Man (slope = 75.15; 161%) incorporation to LH was similar. The action of the neurohormone appears to be exerted on translation, the increased [3H]Man incorporation being a secondary phenomenon arising from the greater amount of available polypeptide chains as acceptors of the polymannose core. However, a direct effect of GnRH on proximal glycosylation cannot be excluded. GnRH also stimulated the kinetics of release of [14C]Leu-LH (slope = 6.14; 236% of control) and [3H]Man-LH (slope = 8.06; 191%). Comparatively, the effect of GnRH on [3H]Gal-LH was detected earlier than that on LH labeled with the other precursors; increases in rates of production (slope = 71.57; 278% of control) and release (slope = 32.08; 494%) were higher than those in [14C]Leu- and [3H]Man-LH kinetics, indicating that GnRH acts specifically on this distal step of LH glycosylation. GnRH enhanced the relative terminal glycosylation ([3H]Gal/[14C]Leu ratio) of total and release LH without modifying the relative proximal glycosylation ([3H]Man/[14C]Leu ration) of the hormone. We conclude that GnRH can induce not only changes in the quantity (greater number of molecules) but also in the quality (molecules more glycosylated) of the secreted LH by acting directly at translation and distal glycosylation level.  相似文献   

5.
Epoxidated fatty acids are the major constituents of the triacylglycerols in a few plant species. We have investigated the biosynthesis of vernolic acid (cis-12-epoxyoctadeca-cis-9-enoic acid) in the seed oil of Euphorbia lagascae. Microsomes were isolated from developing endosperm. The membrane lipids were labeled in situ with [14C]oleate or [14C]linoleate, which mainly were recovered in phosphatidylcholine (PC), and the metabolization of the radioactive fatty acids was followed in incubations with or without NADPH. In the presence of NADPH, [14C]vernoleate was formed. After short incubations, most of the vernolic acid was found in PC, but with increasing incubation times, the free acid dominated. The synthesis of vernoleate was inhibited by carbon monoxide, but not by cyanide. The presence of anticytochrome b5 antibodies inhibited both the desaturation of [14C]oleate to [14C]linoleate and the epoxidation of [14C]linoleate to [14C]vernoleate. Free linoleic acid did not serve as substrate for epoxidation. The results indicate that, in the endosperm of E. lagascae, vernoleate is synthesized on PC from linoleate, and that the epoxidation is catalyzed by a cytochrome P450 and involves cytochrome b5.  相似文献   

6.
A series of radiolabelled ceramides (D-erythro and L-threo) and dihydroceramides (DL-erythro and DL-threo) with 2, 4 or 6 carbon N-acyl groups were synthesized. These analogues were incubated with cultured CHO cells and radioactive products isolated and analyzed. In addition to synthesis of short-chain sphingomyelin and glucosylceramide, radiolabelled sphingosine and sphinganine were released from short-chain ceramides and dihydroceramides and subsequently utilized for synthesis of long-chain ceramide and sphingolipids. Substrate preference for short-chain sphingomyelin synthesis in cells was D-erythro-ceramides > L-threo-ceramides > DL-erythro-dihydroceramides > DL-threo-dihydroceramides, and C4- and C6-analogues were preferred over the C2-analogue. Kinetic constants for conversion of short-chain (dihydro)ceramides to short-chain sphingomyelin were determined using CHO cell membranes and found to correlate with substrate preference in cultured cells. D-erythro-C6-Ceramide was the preferred substrate for short-chain glucosylceramide synthesis. D-erythro-C2-ceramide inhibited incorporation of [3H]serine into sphingomyelin, glucosylceramide and ceramide rapidly (2 h) and in a dose-dependent manner. Over a similar time period, [3H]choline-labelling of sphingomyelin was not affected. Inhibition of [3H]serine-labelling of sphingolipids appeared to correlate with release of [3H]long-chain bases from short-chain ceramides and dihydroceramides and synthesis of long-chain sphingolipids. However, some discrepancies between DL-erythro-C4- and C6-dihydroceramides, and D-erythro-C2-ceramide suggested that short-chain dihydroceramides were less efficient in suppressing de novo synthesis from [3H]serine, while contributing substantially to endogenous sphingolipid synthesis. Inhibition of de novo sphingolipid synthesis by short-chain ceramides and dihydroceramides could not be related to inhibition of serine palmitoyltransferase activity in vitro.  相似文献   

7.
Spherical reservoir-type microcapsules fabricated using a water/oil/water (W/O/W) double emulsion technique with solvent evaporation and composed of poly(ethylene adipate) (PEAD) blended with 20% poly-epsilon-caprolactone (PCL II) containing a range of bovine serum albumin (BSA) loadings were incubated in Hank's buffer, pH 7.4, newborn calf serum, 1.5% pancreatin and synthetic gastric juice containing 10% pepsin A over 30 days and their percentage weight loss (PWL) and changes in ultrastructural morphology monitored by gravimetry and stereoscan electron microscopy (SEM) respectively. The greatest PWL from microcapsules was observed after incubation in newborn calf serum (NCS) and pancreatin and decreased in the order NCS > pancreatin > synthetic gastric juice > Hank's buffer. Only microcapsules theoretically loaded with 5-20% BSA and incubated in synthetic gastric juice showed a significant increase in PWL with increasing percentage BSA loading. The structural biodegradation of PEAD microcapsules in both Hank's buffer and synthetic gastric juice was minimal whilst the morphological changes observed during incubation in NCS involved pitting of the membrane, some surface erosion and reduction in diameter, followed by microcapsule membrane disruption and loss of reservoir contents. Biodegradation in pancreatin was associated with surface flaking and loss of large fragments of the microcapsule membrane. Only in NCS and pancreatin, where one would expect to see the effects of enzyme activity in addition to simple ester hydrolysis, did biodegradation proceed to the stage where there was a loss of spherical shape and almost total disruption of the microcapsule structure within 30 days.  相似文献   

8.
Acetylcholine may be released from gallbladder intrinsic nerves in response to cholecystokinin stimulation. This study characterized metabolites of [14C]choline produced in the gallbladder and released during incubation, with or without cholecystokinin-octapeptide. Radiolabeled [14C]choline was applied to the mucosal or muscle surface of intact guinea pig gallbladders in an organ bath. After radiolabeling, gallbladders were incubated with or without the contractile agonist cholecystokinin-octapeptide. Metabolites of [14C]choline were identified in gallbladder tissue and incubation buffers using HPLC and thin-layer chromatography. The major metabolites of [14C]choline were betaine and phosphocholine. [14C]Phosphocholine was incorporated slowly into [14C]phosphatidylcholine. [14C]Choline was released into buffers during incubation. [14C]Acetylcholine constituted less than 1% of radiolabel in the gallbladder. There was no identifiable [14C]acetylcholine released in buffers. Cholecystokinin-octapeptide did not affect choline metabolism. These studies showed that choline in the gallbladder is metabolized along pathways similar to those in the liver. Gallbladders released mostly choline, rather than acetylcholine, even during hormonally induced contraction.  相似文献   

9.
To determine if lactate is produced during aerobic metabolism in peripheral nerve, we incubated pieces of rabbit vagus nerve in oxygenated solution containing D-[U-14C]glucose while stimulating electrically. After 30 min, nearly all the radioactivity in metabolites in the nerve was in lactate, glucose 6-phosphate, glutamate, and aspartate. Much lactate was released to the bath: 8.2 pmol (microg dry wt)(-1) from the exogenous glucose and 14.2 pmol (microg dry wt)(-1) from endogenous substrates. Lactate release was not increased when bath PO2 was decreased, indicating that it did not come from anoxic tissue. When the bath contained [U-14C]lactate at a total concentration of 2.13 mM and 1 mM glucose, 14C was incorporated in CO2 and glutamate. The initial rate of formation of CO2 from bath lactate was more rapid than its formation from bath glucose. The results are most readily explained by the hypothesis that has been proposed for brain tissue in which glial cells supply lactate to neurons.  相似文献   

10.
1. Acetylcholine synthesis and release were studied in rabbit retinas isolated from the eye and incubated under conditions in which their electrophysiological function is maintained. ACh synthesized from exogenous [14C] choline appeared in the retina at an initial rate of 16 nmol/g wet wt-h. Incorporation of labeled choline into ACh was accelerated by stimulation of the retina with light. 2. Retinas incubated for 40 min in the presence of labeled choline and then superfused with a medium containing an anticholinesterase released radioactive ACh into the perfusate. The rate of release increased approximately fourfold during stimulation with light. 3. When retinas were incubated with labeled choline and then superfused with medium containing no pharmacological agents, stimulation with light caused an increased release of choline into the perfusate. The recovery of labeled choline following stimulation was enhanced by hemicholinium 3. 4. Neither the light-induced release of ACh (in perfusate containing anticholinesterase) nor the light-induced release of choline (in perfusate containing no anticholinesterase) occurred if the perfusate contained 20 mM Mg2+ and 0.2 mM Ca2+. 5. Synthesis of ACh by the retina at a high rate, acceleration of choline incorporation by stimulation, and Ca2+-dependent release of ACh by stimulation are each presumptive evidence that the retina contains a cholinergic synapse. If this presumption is correct, one such synapse may be of an amacrine or bipolar cell since these cells can depolarize during illumination, whereas the predominant response of receptor and horizontal cells is hyperpolarization.  相似文献   

11.
Incubation of liver microsomes with GDP [14C] mannose leads to the formation of lipid-linked derivatives of [14C] mannose, a dolichol phosphate monosaccharide and dolichol pyrophosphate oligosaccharides. Standard procedures for separating these two types of compounds from each other were found to be deficient in that fractions thought to contain only dolichol pyrophosphate oligosaccharides are contaminated with dolichol phosphate mannose. This paper presents a column chromatographic procedure which conveniently separates the products of an 8 min labeling experiment into two components; dolichol phosphate [14C]mannose and a [14C]-mannose containing oligosaccharide which is also lipid bound. When this oligosaccharide is released from the lipid by hydrolysis and chromatographed on Sephadex G-50 or G-15 it gives a single peak with an indicated molecular weight of 1100. However, when this released oligosaccharide is chromatographed on concanavalin A Sepharose it is resolved into two peaks suggesting that there may be 2 oligosaccharide of approximately the same size but different structures. After brief periods of labeling with GDP [14C]mannose (5 s) an additional oligosaccharide of 3 to 4 sugar residues can be found in the dolichol pyrophosphate oligosaccharides fraction. Incubation of liver microsomes with UDP [14C]glucose or UDP[14C]galactose produces oligosaccharide components containing 7--8 sugar residues. Labeling of microsomes with UDP[14C]acetylglucosamine gives rise to three different components, including a lipid bound oligosaccharide containing 3- 5 sugar residues.  相似文献   

12.
We have compared the efflux of cholesterol from different cellular pools of human hepatoma cells HepG2 using intact cells or isolated membrane fractions. To label different pools, cells were incubated with either unesterified [14C]cholesterol that had been incorporated into high density lipoproteins ([14C]FC-HDL), low density lipoproteins ([14C]FC-LDL), or phosphatidylcholine liposomes ([14C]FC-PC), or with [14C]acetate. Cell fractionation revealed that labeling of cells with [14C]FC-PC resulted in the incorporation of [14C]cholesterol almost exclusively into the plasma membrane (PM), while incubation with [14C]FC-HDL resulted in the majority of [14C]cholesterol incorporation into the PM, but with a smaller component associated with lysosomes. Labeling with [14C]FC-LDL or [14C]acetate led to an accumulation of [14C]cholesterol predominantly in lysosomes or the endoplasmic reticulum (ER), respectively. When the kinetics of [14C]cholesterol efflux was analyzed after pulse-labeling of different cellular pools, half-times of cholesterol efflux from lysosomes and ER were significantly longer than that from PM. In another set of experiments, when both labeling and efflux times varied, efflux of [14C]cholesterol from the PM to human serum after 1.5 h pulse and chase incubations was double that from lysosomes and 8-fold that from ER. Extension of the incubation times from 1.5 to 3 h diminished the difference in cholesterol efflux from different membranes. Further incubation to 6 h almost abolished the different responses. Cell-free preparations of membranes, obtained from cells labeled with [14C]cholesterol, showed no differences in cholesterol efflux. No differences in the distribution of [14C]cholesterol released into serum among lipoprotein subfractions was observed. Pretreatment of the serum with Fab fragments of polyclonal rabbit anti-human apolipoprotein A-I antibodies reduced its ability to promote efflux of cholesterol from the ER by 77%, but had no effect on cholesterol efflux from the PM. Fab fragments of non-immune IgG had no effect on the efflux of both ER and PM cholesterol. We conclude that the availability of cellular cholesterol for efflux from HepG2 cells is strongly influenced by its subcellular location, and is regulated by apolipoprotein A-I.  相似文献   

13.
The mechanism of inactivation of the pyridoxal 5'-phosphate (PLP)-dependent enzyme gamma-aminobutyric acid (GABA) aminotransferase by 3-amino-4-fluorobutanoic acid (2) has been investigated. As in the case of the homologue, 4-amino-5-fluoropentanoic acid (1), 2 equiv of radiolabeled inactivator become covalently attached to the enzyme, and no transamination, as determined by the lack of conversion of [1-14C] alpha-ketoglutarate into [1-14C] glutamate during inactivation, was observed. In the case of 1, the conclusion was that inactivation was completely the result of modification of the coenzyme and that there was no metabolic turnover; every enzyme molecule catalysed the conversion of one molecule of inactivator to the activated species, which inactivated the enzyme by an enamine mechanism. With 2, however, 6.7 +/- 0.7 equiv of fluoride ions were released during inactivation, and it took 7.6 +/- 0.7 inactivator molecules to inactivate each enzyme dimer. Since no transamination was occurring, another metabolic event besides inactivation must result from the PLP form of the enzyme. Inactivation of GABA amino-transferase with [1,2-14C]-2 produced [14C] acetoacetic acid (about 5.5 equiv) as the metabolite. The 1.93 +/- 0.25 equiv of radioactivity covalently bound to the enzyme after inactivation with [1,2-14C]-2 and gel filtration were completely released by base treatment. HPLC analysis showed that three radioactive compounds, identified as 2, the product of reaction of PLP with acetone (3), and the product of reaction of PLP with acetoacetate (4), were detected. The release of 3 and 4 and the prevention of release of radioactivity by treatment with sodium borohydride are consistent with the formation of covalent intermediates that have beta-carbonyl-like character, such as 6 and/or 7 (Scheme 2). Inactivation of [3H] PLP-reconstituted GABA aminotransferase with 2 followed by gel filtration then base denaturation released all of the radioactivity as a mixture of PLP, 3, and 4. Inactivation with [1,2-14C]-2 resulted in the release of 1.37 equiv of 14CO2, which was shown to be the result of decarboxylation of the acetoacetate/4 after release from the enzyme. These results are not consistent with a Michael addition mechanism (Scheme 3), but are consistent with inactivation by an enamine mechanism; release of the enamine five out of seven turnovers accounts for the formation of acetoacetate as the metabolite. To account for the detection of PLP and 2 after denaturation, it is suggested that a nonproductive formation of the Schiff base of PLP with 2 occurs in the second subunit of the enzyme; this complex is released and hydrolysed to PLP and 2 upon base denaturation.  相似文献   

14.
15.
A number of endothelium-derived relaxing factors have been identified including nitric oxide, prostacyclin, and the epoxyeicosatrienoic acids. Previous work showed that in rabbit aortic endothelial cells, arachidonic acid was metabolized by a lipoxygenase to vasodilatory eicosanoids. The identity was determined by the present study. Aortic homogenates were incubated in the presence of [U-14C]arachidonic acid, [U-14C]arachidonic acid plus 15-lipoxygenase (soybean lipoxidase), or [U-14C]15-hydroxyeicosatetraenoic acid (15-HPETE) and analyzed by reverse phase high pressure liquid chromatography (RP-HPLC). Under both experimental conditions, there was a radioactive metabolite that migrated at 17.5-18.5 min on RP-HPLC. When the metabolite was isolated from aortic homogenates, it relaxed precontracted aortas in a concentration-dependent manner. Gas chromatography/mass spectrometry (GC/MS) of the derivatized metabolite indicated the presence of two products; 11,12,15-trihydroxyeicosatrienoic acid (THETA) and 11,14,15-THETA. A variety of chemical modifications of the metabolite supported these structures and confirmed the presence of a carboxyl group, double bonds, and hydroxyl groups. With the combination of 15-lipoxygenase, arachidonic acid, and aortic homogenate, an additional major radioactive peak was observed. This fraction was analyzed by GC/MS. The mass spectrum was consistent with this peak, containing both the 11-hydroxy-14, 15-epoxyeicosatrienoic acid (11-H-14,15-EETA) and 15-H-11,12-EETA. The hydroxyepoxyeicosatrienoic acid (HEETA) fraction also relaxed precontracted rabbit aorta. Microsomes derived from rabbit aortas also synthesized 11,12,15- and 11,14,15-THETAs from 15-HPETE, and pretreatment with the cyctochrome P450 inhibitor, miconazole, blocked the formation of these products. The present studies suggest that arachidonic acid is metabolized by 15-lipoxygenase to 15-HPETE, which undergoes an enzymatic rearrangement to 11-H-14,15-EETA and 15-H-11,12-EETA. Hydrolysis of the epoxy group results in the formation of 11,14,15- and 11,12,15-THETA, which relaxed rabbit aorta. Thus, the 15-series THETAs join prostacyclin, nitric oxide, and epoxyeicosatrienoic acids as new members of the family of endothelium-derived relaxing factors.  相似文献   

16.
Patients homozygous for the Z allele of alpha-1-antitrypsin (alpha 1AT) have very low serum levels and are predisposed to emphysema. There have also been reports of emphysema being associated with the heterozygous phenotype FZ. To investigate whether F alpha 1AT was dysfunctional, the inhibitory activity of F alpha 1AT against human neutrophil elastase (HNE) was compared with that of common alpha 1AT phenotypes. Time-dependent inhibition of HNE by alpha 1AT was used to calculate the association rate constant (k assoc) for M, MZ, FM, FZ, F (partially purified from FZ or FS), Z and S alpha 1AT phenotypes in human sera. The results for k assoc at 25 degrees C were 9.1 (SD 0.9), 9.7 (SD 0.9), 8.0 (SD 0.8), 4.0 (SD 0.4), 4.2 (SD 0.8), 5.1 (SD 0.6) and 8.6 (SD 0.6) x 10(6) M-1s-1 respectively. F was found to have reduced activity much like that of Z, the alpha 1AT most commonly associated with emphysema. MZ (low risk for disease) and FZ heterozygotes had similar intermediate alpha 1AT levels. However the in vivo inhibition time for FZ was almost three times longer than for MZ, indicating greater exposure to proteolytic damage from free elastase for FZ than MZ individuals. In conclusion, F alpha 1AT is expressed in serum at low normal levels but is dysfunctional in its ability to inhibit HNE. Individuals who coinherit the F and a deficiency allele such as Z or Null, are likely to have a high risk for the development of emphysema. The disease risk for F homozygotes remains to be determined.  相似文献   

17.
The membranes tested in the present study were cellulose triacetate (CTA), polymethylmethacrylate (PMMA), and polyacrylonitrile (PAN). The adsorption by each membrane of albumin, IgG, C3a, interleukin-1beta (IL-1beta), interleukin-6 (IL-6), human neutrophil elastase (HNE), and tumor necrosis factor alpha (TNFalpha) was examined and semiquantitatively graded by confocal laser scanning fluorescence microscopy (CLSFM). After clinical use the dialyzers were treated with antibodies for these proteins and cytokines. Then the samples were incubated with fluorescein isothiocyanate-labeled anti-IgG antibody and observed by CLSFM. The changes in the blood levels of C3a and cytokines were also studied. In the CTA membrane, the adsorption of these substances, except for albumin and HNE, was less than in the synthetic membranes. The PAN membrane revealed the most abundant adsorption, especially for IL-1beta, IL-6, and TNFalpha. Although a marked elevation of C3a in the blood was observed in the CTA membrane, considerable adsorption was evident in the PMMA and the PAN membranes. Because the changes in the blood levels could be affected by membrane adsorption, both the blood levels and the adsorption of the biocompatibility parameters should be evaluated when membrane biocompatibility is discussed.  相似文献   

18.
During feeding experiments with [omega-14C]oleic acid and [omega-14c]nervonic acid to adult rats, 14C-labelled C26, C28 and C30 fatty acids were recovered from the intestinal mucosa, liver, plasma, kidney and stools. The structures of these fatty acids were determined by g.l.c., radio-g.l.c. and mass spectrometry. The Schmidt and Ginger degradation methods indicated that most of the 14C found in these extra-long fatty acids remained in the omega position. These radioactive extra-long fatty acids were found mainly in the polar lipids of rats killed 3 or 15 h after being fed on labelled oleic acid or nervonic acid. Rats killed 63 h later yielded only traces of these extra-long fatty acids. When the rats were given antibiotics or received the same radioactive fatty acids by intravenous injection, the labelled extra-long fatty acids could not be detected in any of the tissues. We conclude that they were probably synthesized by elongation of oleic acid and nervonic acid by intestinal micro-organisms (probably yeasts) and then absorbed by the intestinal mucosa.  相似文献   

19.
BACKGROUND: Construction of an ileal faecal or urinary reservoir profoundly alters ileal luminal ecology and availability of mucosal metabolic substrates. The aims of this study were to measure mucosal metabolic flux of butyrate and glutamine in histologically normal (control) ileum and to determine the effect of reservoir construction on metabolic fluxes in patients with ileal pouch-anal anastomosis and ileocystoplasty. METHODS: Endoscopic biopsy samples were obtained from normal ileum (n = 10), ileum of patients with ulcerative colitis (n = 10), ileal pouch-anal anastomosis (n = 7), ileocystoplasty (n = 7) and ileal conduit (n = 7). Using a closed microculture technique, biopsy utilization of 14C-labelled butyrate and glutamine was measured as [14C]carbon dioxide production. Biopsy DNA content was measured and [14C]carbon dioxide evolution expressed as picomoles [14C]carbon dioxide per microgram DNA per hour. RESULTS: The metabolic flux of both butyrate and glutamine was reduced in ileal pouch mucosa compared with that of ileal mucosa in patients with ulcerative colitis. In contrast, the metabolic flux of buyrate alone was reduced in ileal mucosa from ileocystoplasty and ileal conduit compared with that in normal ileal mucosa, while the metabolic flux of glutamine remained unchanged. CONCLUSION: Ileal mucosal metabolic fluxes measured in vitro are altered by changing luminal ecology in vivo. These changes may affect the health and mucosal integrity of ileum used to construct these reservoirs.  相似文献   

20.
The turnover rates of plasma lactate, normalized for O2 consumption rate, are higher in the fetus than in the adult. This occurs despite very low rates of fetal gluconeogenesis which preclude the recycling of lactate carbon into glucose. In an effort to establish the main routes of disposal of fetal plasma lactate, 12 midgestation ovine fetuses (age 74 +/- 1 days) were infused intravenously at constant rate with L-[U-14C]lactate for a 4-hour period. At the end of the infusion, the amounts of 14C retained by the fetus and by the placenta, and the distribution of the retained 14C in free and protein-bound amino acids and in lipids were measured. Of the total 14C infused, 17.0 +/- 1.4% was recovered in the placenta, 4.0 +/- 0.3% in the fetal liver, and 15.0 +/- 0.8% in the extrahepatic fetal tissues. Of the retained radioactive carbon, 45-57% was recovered in the free and protein-bound amino acid fractions and 11-17% in the lipid fractions. Approximately 90% of the 14C in the free amino acid fractions was present as glutamate/glutamine, serine, glycine, and alanine carbon. In conjunction with data on fetal CO2 production from lactate carbon, these results demonstrate that the main routes of fetal lactate disposal are oxidation and synthesis of nonessential amino acids and lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号