首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ziyu  Shao  Dongbin  Yan  Zhengbin  Li  Ziyu  Wang  Anshi  Xu 《Photonic Network Communications》2004,7(3):301-312
Wavelength routed optical networks have emerged as a technology that can effectively utilize the enormous bandwidth of the optical fiber. Wavelength conversion technology and wavelength converters play an important role in enhancing fiber utilization and in reducing the overall call blocking probability of the network. In this paper, we develop a new analytical model to calculate the average blocking probability in multi-fiber link networks using limited range wavelength conversion. Based on the results obtained, we conclude that the proposed analytical model is simple and yet can effectively analyze the impact of wavelength conversion ranges and number of fibers on network performance. Also a new heuristic approach for placement of wavelength converters to reduce blocking probabilities is explored. Finally, we analyze network performance with the proposed scheme. It can be observed from numerical simulations that limited range converters placed at a few nodes can provide almost the same blocking probability as full range wavelength converters placed at all the nodes. We also show that being equipped with a multi-fiber per-link has the same effect as being equipped with the capability of limited range wavelength conversion. So a multi-fiber per-link network using limited range wavelength conversion has similar blocking performance as a full wavelength convertible network. Since a multi-fiber network using limited range wavelength conversion could use fewer converters than a single-fiber network using limited range wavelength conversion and because wavelength converters are today more expensive than fiber equipment, a multi-fiber network in condition with limited range wavelength conversion is less costly than a single fiber network using only limited range wavelength conversion. Thus, multi-fiber per-link network using limited range wavelength conversion is currently a more practical method for all optical WDM networks. Simulation studies carried out on a 14-node NSFNET, a 10-node CERNET (China Education and Research Network), and a 9-node regular mesh network validate the analysis.  相似文献   

2.
Many recent studies have convincingly demonstrated that network traffic exhibits a noticeable self-similar nature, which has a considerable impact on network performance, and most studies of optical burst switching (OBS) networks are under a fundamental assumption that full wavelength conversion is available throughout the network. In practice, however, economic and technical considerations are likely to dictate a more limited and sparse deployment of wavelength converters in the optical network. Therefore, we present a novel scheme for OBS networks, called logical cascaded private subnet (LCPN) with start wavelength assignment policy. We define the concept of canoe relative to cluster in self-similar traffic, and introduce a new device named payload segregator at the edge node as a gateway to the core node in OBS Networks. According to the changes in the edge node framework, we put forward the concept of cluster private subnet and canoe private subnet in the core node correspondingly. A new start wavelength assignment policy is proposed for the absence of (full) wavelength conversion capabilities in the core node of OBS Networks. The performance study indicates that, our new scheme is robust under self-similar traffic and wavelength continuity constraint.  相似文献   

3.
Optical burst switching (OBS) is a promising technique for wavelength division multiplexing (WDM) networks. In practice, wavelength converters (WCs) are either absent or only sparsely deployed in WDM networks due to economic and technical limitations. Thus, wavelength assignment is expected to be an important component of OBS networks. In this paper, an offline wavelength assignment scheme in OBS networks without wavelength conversion capability is proposed. The key idea of the scheme is to decide the wavelength searching order of each traffic connection at edge nodes according to the wavelength priorities determined by the calculated burst loss probabilities on different wavelengths. Simulation results indicate that the proposed scheme can reduce the network-wide burst loss probability significantly compared with other schemes. It is also illustrated that the performance of the proposed scheme can be further enhanced by a larger number of wavelengths per link and a reasonable delay bound at edge nodes.  相似文献   

4.
秦浩  张奭  刘增基 《电子学报》2003,31(5):717-720
本文研究了波长转换范围受限全光网中的动态路由和波长分配问题,提出了一种固定备选路由条件下新的路由和波长分配算法.算法引入了波长相关性的概念,用波长关联权值定量描述了各路由的前后链路上不同波长之间的相互依赖关系.在建立连接时首先使用那些依赖性强,对其他路由影响小的波长,从全局的角度出发选择最优的路由和波长分配方案.计算机仿真表明,本文算法能够适用于稀疏网络和网状网,在均匀业务强度或者大部分业务量来自于长跳路由的情况下,本文算法能够显著降低网络阻塞概率和使用的波长转换器数目,有效提高系统性能.  相似文献   

5.
In this paper, we present a new analytical model that can give an accurate estimation of the blocking probabilities in wavelength-routed optical networks with heterogeneous traffic. By heterogeneous, we mean that each session offered to the network has its own traffic intensity and burstiness. In such cases, the blocking probability of a session is determined by the busy-wavelength distributions of the links seen at the arrival points of its calls. Thus, we first present two single-link models to estimate the arrival-point busy-wavelength distribution of a link with heterogeneous traffic: the full-population (FP) model and the reduced-population (RP) model. Both models are based on the BPP/M/W/W model, where the first two moments of an arbitrary session are matched by those of a birth–death process whose arrival rate linearly varies with the average number of busy wavelengths occupied by its own calls. We show that different sessions have different arrival-point busy-wavelength distributions depending on the burstiness of their traffic, i.e., a bursty session observes the link more congested than a smooth session. Next, we provide two extensions of the single-link models, the FP-full-load link-correlation model and the RP-reduced-load link-correlation model, to estimate the blocking probabilities of optical networks with heterogeneous traffic and sparse wavelength conversion. Both models employ the existing link-correlation models to take into account the occupied-wavelength-index correlation between two adjacent links. By comparing the results from the models with simulation results, we demonstrate that both models well approximate the blocking probabilities of individual sessions, as well as the network-wide blocking probability, for a wide range of traffic intensity, burstiness, and heterogeneity.  相似文献   

6.
Wavelength routed optical networks have emerged as a technology that can effectively utilize the enormous bandwidth of the optical fiber. Wavelength conversion technology and wavelength converters play an important role in enhancing fiber utilization and in reducing the overall call blocking probability of the network. In this paper, we develop a new analytical model to calculate the average blocking probability in multi-fiber link networks using limited-range wavelength conversion. Based on the results obtained, we conclude that the proposed analytical model is simple and yet can effectively analyze the impact of wavelength conversion ranges and number of fibers on network performance. Also a new heuristic approach for placement of wavelength converters to reduce blocking probabilities is explored. Finally, we analyze network performance with the proposed scheme. It can be observed from numerical simulations that limited-range converters placed at a few nodes can provide almost the same blocking probability as full range wavelength converters placed at all the nodes. We also show that being equipped with a multi-fiber per-link has the same effect as being equipped with the capability of limited-range wavelength conversion. So a multi-fiber per-link network using limited-range wavelength conversion has similar blocking performance as a full wavelength convertible network. Since a multi-fiber network using limited-range wavelength conversion could use fewer converters than a single-fiber network using limited range wavelength conversion and because wavelength converters are today more expensive than fiber equipment, a multi-fiber network in condition with limited-range wavelength conversion is less costly than a single-fiber network using only limited-range wavelength conversion. Thus, multi-fiber per-link network using limited-range wavelength conversion is currently a more practical method for all optical WDM networks. Simulation studies carried out on a 14-node NSFNET, a 10-node CERNET (China Education and Research Network), and a 9-node regular mesh network validate the analysis.  相似文献   

7.
The increased usage of large bandwidth in optical networks raises the problems of efficient routing to allow these networks to deliver fast data transmission with low blocking probabilities. Due to limited optical buffering in optical switches and constraints of high switching speeds, data transmitted over optical networks must be routed without waiting queues along a path from source to destination. Moreover, in optical networks deprived of wavelength converters, it is necessary for each established path to transfer data from source to destination by using only one wavelength. To solve this NP-hard problem, many algorithms have been proposed for dynamic optical routing like Fixed-Paths Least Congested (FPLC) routing or Least Loaded Path Routing (LLR). This paper proposes two heuristic algorithms based on former algorithms to improve network throughput and reduce blocking probabilities of data transmitted in all-optical networks with regard to connection costs. We also introduce new criteria to estimate network congestion and choose better routing paths. Experimental results in ring networks show that both new algorithms achieve promising performance.  相似文献   

8.
《Optical Fiber Technology》2007,13(3):191-197
We consider the routing and wavelength assignment (RWA) problem on wavelength division multiplexing (WDM) networks without wavelength conversion. When the physical network and required connections are given, RWA is the problem to select a suitable path and wavelength among the many possible choices for each connection such that no two paths using the same wavelength pass through the same link. In WDM optical networks, there is need to maximize the number of connections established and to minimize the blocking probability using limited resources. This paper presents efficient RWA strategies, which minimizes the blocking probability. Simulation results show that the performance of the proposed strategies is much better than the existing strategy.  相似文献   

9.
潘皓  许毅  范戈 《光通信研究》2008,34(1):20-23
结合国内外最新的研究动态,针对有限波长转换能力的光突发交换网中亟待解决的突发包资源竞争问题,探讨了各种传统的波长分配算法,并通过对其特点的分析和综合比较,提出了一种新的适合有限波长转换能力光突发交换网特点的动态波长分配算法,此算法可以实现更低的全网突发包阻塞率.  相似文献   

10.
WDM protocol-transparent distance extension using R2 remodulation   总被引:2,自引:0,他引:2  
In computer networks using wavelength-division multiplexing (WDM), it is often necessary to extend the length of a given WDM path beyond that of a single segment whose length Is limited by the link budget. While wavelength-flattened optical amplifiers are the most obvious solution, this paper calls attention to a simple (albeit less efficient) alternative that works for any number of wavelength channels, but only a modest number of segments and modest bit rates. This scheme substitutes for each optical amplifier stage a multiwavelength 2R remodulator consisting of a WDM demultiplexor, followed by wavelength-by-wavelength zero-crossing detectors, then remodulation wavelength by wavelength, and finally wavelength-division multiplexing back onto a single fiber. Theory and experimental results confirm the usefulness of this primitive technique, which can also be used for add-and-drop links, for wavelength routing or wavelength conversion in scalable wavelength routing networks, for internetwork gateways, and for other applications  相似文献   

11.
Performance analyses of optical burst-switching networks   总被引:6,自引:0,他引:6  
This paper provides a scalable framework for analysis and performance evaluation of optical burst-switching (OBS) networks. In particular, a new reduced load fixed point approximation model to evaluate blocking probabilities in OBS networks is introduced. The model is versatile enough to cover known OBS reservation policies such as just-enough-time, just-in-time, burst segmentation, and route-dependent priorities. The accuracy of the model is confirmed by simulation and the various policies are compared.  相似文献   

12.
A fundamental assumption underlying most studies of optical burst switched (OBS) networks is that full wavelength conversion is available throughout the network. In practice, however, economic and technical considerations are likely to dictate a more limited and sparse deployment of wavelength converters in the optical network. Therefore, we expect wavelength assignment policies to be an important component of OBS networks. In this paper, we explain why wavelength selection schemes developed for wavelength routed (circuit-switched) networks are not appropriate for OBS. We then develop a suite of adaptive and nonadaptive policies for OBS switches. We also apply traffic engineering techniques to reduce wavelength contention through traffic isolation. Our performance study indicates that, in the absence of full conversion capabilities, intelligent choices in assigning wavelengths to bursts at the source can have a profound effect on the burst drop probability in an OBS network.  相似文献   

13.
This work presents the blocking performance of a single node with (full or limited) wavelength conversion in wavelength routed optical networks (WRON) based on the theory of probability. A blocking probability model is proposed. Particularly, we pay more attention to investigate wavelength routing node performance improvement by using the more feasible case of limited wavelength conversion. Based on our analytical model, we calculate the blocking probability for a single wavelength routing node and then make a simulation to validate it. It is shown that a node with low conversion degrees having a small number of fiber link ports and a large number of wavelengths per link is a more realistic choice.  相似文献   

14.
This paper considers wavelength routed WDM networks where multiple fibers are used for each communication link. For such networks, the effect of wavelength translation can be achieved without explicit use of wavelength translators. We call this as virtual wavelength translation and study the routing issues considering dynamic lightpath allocation. Using multiple (or a bundle of) fibers for each link also allows us to have bundles of varying sizes to accommodate anticipated differences in traffic through different communication links of the network. The paper considers the blocking probabilities of all-optical networks when centralized and distributed lightpath allocation schemes are used.  相似文献   

15.
OBS网络中一种基于突发包优先级分割的可控重传方案   总被引:2,自引:2,他引:0  
在光突发交换(OBS)网络中,突发包会由于竞争OBS核心节点输出端口的有限波长资源而发生冲突。突发包重传能够在一定程度上减少由于突发包在核心节点冲突而导致的数据损失,但重传次数的增加可能会加重网络负荷,反而增加数据丢失率。并且,在多业务存在的OBS网络中,重传方案需要能够实现区分服务以保证网络的服务质量(QoS)。据此,本文提出一种基于突发包优先级分割的可控重传方案,在实施优先级分割的同时,根据网络负荷赋予每次重传不同的概率,并对重传次数加以控制。最后,仿真分析了路径阻塞率和不同优先级业务的字节丢失率(ByLP,byte loss probability)性能。  相似文献   

16.
This paper proposes optical wavelength division multiplexed (WDM) networks with limited wavelength conversion that can efficiently support lightpaths (connections) between nodes. Each lightpath follows a route in a network and must be assigned a channel on each link along the route. The load λmax of a set of lightpaths is the maximum over all links of the number of lightpaths that use the link. At least λmax wavelengths will be needed to assign channels to the lightpaths. If the network has full wavelength conversion capabilities, then λmax wavelengths are sufficient to perform the channel assignment. Ring networks with fixed wavelength conversion capability within the nodes are proposed that can support all lightpath sets with load λmax at most W-1, where W is the number of wavelengths in each link. Ring networks with a small additional amount of wavelength conversion capability within the nodes are also proposed that allow the support of any set of lightpaths with load λmax at most W. A star network is also proposed with fixed wavelength conversion capability at its hub node that can support all lightpath sets with load λmax at most W. These results are extended to tree networks and networks with arbitrary topologies. This provides evidence that significant improvements in traffic-carrying capacity can be obtained in WDM networks by providing very limited wavelength conversion capability within the network  相似文献   

17.
We study a class of all-optical networks using wavelength-division multiplexing (WDM) and wavelength routing, in which a connection between a pair of nodes in the network is assigned a path and a wavelength on that path. Moreover, on the links of that path no other connection can share the assigned wavelength. Using a generalized reduced load approximation scheme we calculate the blocking probabilities for the optical network model for two routing schemes: fixed routing and least loaded routing  相似文献   

18.
In this paper, we present a new analytical model that captures link dependencies in all-optical wavelength-division multiplexing (WDM) networks under uniform traffic and enables the estimation of connection-blocking probabilities more accurately than previously possible. The basic formula of the dependency between two links in this model reflects their degree of adjacency, the degree of connectivity of the nodes composing them, and their carried traffic. Our validation tests have shown that the analytical dependency model gives accurate results and successfully captures the main dependency characteristics observed in the simulation measurements. The usefulness of the model is illustrated by showing how to use it in enhancing a simulation-based algorithm that we recently proposed for the sparse placement of full wavelength converters in WDM networks. To analytically handle the presence of wavelength converters, a lightpath containing converters is divided into smaller subpaths, such that each subpath is a wavelength-continuous path, and the nodes shared between these subpaths are full wavelength-conversion-capable. The blocking probability of the entire path is obtained by computing the probabilities in the individual subpaths. We validate the analytically-based sparse placement algorithm by comparing it with its simulation-based counterpart using a number of network topologies.  相似文献   

19.
We present an analytical technique of very low complexity, using the inclusion-exclusion principle of combinatorics, for the performance evaluation of all-optical, wavelength-division multiplexed networks with no wavelength conversion. The technique is a generalized reduced-load approximation scheme which is applicable to arbitrary topologies and traffic patterns. One of the main issues in computing blocking probabilities in all-optical networks is the significant link load correlation introduced by the wavelength continuity constraint. One of the models we propose takes this into account and gives good results even under conditions with high link load correlation. Through numerous experiments we show that our models can be used to obtain fast and accurate estimates of blocking probabilities in all-optical networks and scale well with the path length and capacity of the network. We also extend one of our models to take into account alternate routing, in the form of Fixed Alternate Routing and Least Loaded Routing.  相似文献   

20.
In this article, we study the blocking probability in a wavelength division multiplexing (WDM) based asynchronous bufferless optical burst switched (OBS) network, equipped with a bank of wavelength converters. Our analysis encloses two wavelength reservation schemes JIT (just-in-time) and JET (just-enough-time), and two-class data rate. The contribution of our work includes: (i) derivation of an accurate model for blocking probability of lower priority bursts in case of a non-preempted model; (ii) provision of the analytical model for blocking probability calculation in the OBS network, which includes these variables: two signaling schemes, partial wavelength conversion, two-class data, traffic intensity, cross-connect speed, number of wavelengths in WDM fiber, number of fibers in the node, number of wavelength converters, and number of nodes in the path; (iii) simulation results, which show that partial wavelength conversion provide quite satisfactory quality of service. We compare performance in a single OBS node, under various sets of parameter values. The OBS network shows great flexibility in terms of used multiclass data, and there is no dependence on the used higher layer protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号