首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sialidase L is a NeuAcalpha2-->3Gal linkage-specific sialidase that releases 2,7-anhydro-NeuAc instead of NeuAc from sialoglycoconjugates (Chou, M.-Y., Li, S.-C., Kiso, M., Hasegawa, A., and Li, Y.-T.(1994) J. Biol. Chem. 269, 18821-18826). A 2. 5-kilobase cDNA of sialidase L was cloned by a combination of methods based on polymerase chain reactions. The composite cDNA sequence reveals an open reading frame coding for 762 amino acids, including a putative 28-residue signal peptide at the N terminus that is similar to the signal sequence of the Clostridium septicum sialidase. The result suggests that sialidase L is a secretory enzyme. The coding sequence excluding the putative signal peptide of sialidase L was overexpressed in Escherichia coli. The purified recombinant enzyme was characterized to be as active as the enzyme isolated from the leech. It also possessed the strict NeuAcalpha2-->3Gal linkage specificity and released the unique cleavage product, 2,7-anhydro-NeuAc from sialoglycoconjugates. The deduced amino acid sequence of sialidase L exhibits little similarity with other reported sialidases. However, sialidase L contains a conserved "FRIP region" and four repeating "Asp box" motifs that align well with the corresponding positions of bacterial sialidases. The predicted beta-strand structures near the conserved motifs of sialidase L are similar to those of Salmonella typhimurium sialidase. Several conserved single amino acid residues of bacterial sialidases, including those known to be involved in the active site of Salmonella enzyme, are conserved in the deduced amino acid sequence of sialidase L. This observation suggests that part of the catalytic mechanism of sialidase L may be similar to the ordinary sialidase.  相似文献   

2.
Sialoglycosphingolipids (gangliosides) have been increasingly implicated as regulators of membrane signaling events. Macrophage ganglioside patterns dramatically increase in complexity when murine peritoneal macrophages are stimulated in vivo with the appearance of the sialidase-sensitive monosialoganglioside GM1b (cisGM1) as a major component. Gangliosides from stimulated murine peritoneal macrophages were separated into monosialo and polysialo fractions and the polysialo fraction structurally characterized by enzymatic, chemical, and mass spectra methods. All detectable components of the polysialo fraction were determined to be disialogangliosides. Treatment of the polysialo fraction with Clostridium perfringens sialidase produced mostly the sialidase-resistant monosialoganglioside, GM1a, and a minor amount of asialoGM1. Periodate oxidation and mass spectrometry analyses demonstrated the lack of tandem disialo moieties which indicated the absence of GD1b or GD1c (GD1) entities. The combined data showed the major disialogangliosides consisted of GD1a entities comprising IV3-NeuAc,II3NeuAc-GgOse4Cer, IV3-NeuGc,II3NeuAc-GgOse4Cer, IV3NeuAc,II3NeuGc-GgOse4Cer, and IV3-NeuGc,II3NeuGc-GgOse4Cer. Minor components consisted of GD1alpha entities, IV3NeuAc, III6NeuAcGgOse4Cer, IV3NeuGc, III6NeuGc-GgOse4Cer, and also positional isomer(s) of GD1alpha(NeuAc, NeuGc). These isomeric components were identified by collision analysis and tandem mass spectrometry. Consistent with previous analyses, the ceramide portion of all polysialo (disialo) gangliosides contained solely C18 sphingosine with C16 and C24 fatty acid moieties. These results, combined with the previous characterization of macrophage monosialogangliosides, indicate normal murine macrophage ganglioside biosynthesis proceeds along the "a" ganglioside pathway, e.g., GM3-->GM2-->GM1a-->GD1a, and the proposed asialoganglioside or "alpha" pathway, asialoGM1-->GM1b-->GD1alpha. The presence of totally sialidase-sensitive gangliosides appears to be characteristic of functional murine peritoneal macrophages while they are reduced in genetically impaired cells.  相似文献   

3.
Sulfated glycosaminoglycans are known to inhibit mammalian acid-active sialidase. Although the inhibition depends clearly on the presence of sulfate groups on these macromolecules, there was no information on the intrinsic inhibitory potency of inorganic sulfate. In this study, we demonstrate that inorganic sulfates inhibit acid-active Mu-Neu5Ac sialidase of U937 cells. This inhibition was found to be reversible and it appeared to be of the mixed competitive type. Sulfate-induced inhibition was also observed in other cells as well as with other substrates such as sialyl lactose and bovine mixed brain gangliosides. We conclude that the intrinsic inhibitory potency of sulfate groups may be significantly involved in the inhibition of acid-active sialidase by sulfated glycosaminoglycans. In addition, inorganic sulfate by its apparent potency to selectively inhibit acid sialidases might constitute an interesting tool for the characterisation of the minor forms of sialidases occurring in mammalian cells.  相似文献   

4.
Exogenously added gangliosides enhance sprouting, neurite outgrowth, and other neuronal activities; this effect may be initiated when a ganglioside binds to a membrane protein or when a ganglioside intercalates into the plasma membrane. To test whether binding to membrane proteins is sufficient for ganglioside-mediated activity, anti-idiotypic antibodies were generated that mimic the functional binding sites of the ganglioside GM1 as described by M. J. Riggott and W. D. Matthew (1996, Glycobiology, 6, 581-589). These anti-idiotypic antibodies are proteinaceous probes that model the biochemical and biological effects of gangliosides. Those anti-idiotypic ganglioside (AIG) monoclonal antibodies (mAb's) were selected based on their ability to bind a known GM1 binding protein, the beta-subunit of cholera toxin. These studies described neuronal cell surface proteins that were identified by immunocytochemistry and Western blotting using these AIG mAb's. Here we show that AIG mAb's mimic the functional properties of GM1 in that they facilitate neurite outgrowth from central and peripheral nervous system neurons in in vitro bioassays. In addition, AIG mAb binding modulates second messenger activity, suggesting that membrane protein binding alone is sufficient to invoke intracellular activation. The similarity in the pattern of protein tyrosine phosphorylation evoked by GM1 and the anti-idiotypic ganglioside antibodies suggests that the AIG mAb's modulate neurite outgrowth in a manner similar to that of GM1. Because antibodies cannot intercalate into the plasma membrane, these results suggest that the ganglioside GM1 can mediate neuronal cellular activity by binding to cell surface proteins.  相似文献   

5.
While the mechanism of signal transduction across the plasma membrane from the exo- to the endoplasmic side has been extensively investigated, the possible return of messages back to the outer layer is less known. We studied the effect of protein kinase C activation on the ganglioside accessibility at the exoplasmic face of intact rat cerebellar granule cells in culture, using the enzyme sialidase as the probing molecule. Under the experimental conditions (1 milliunit/mL enzyme, 2 min incubation at 37 degreesC), only GT1b and GD1a gangliosides were partially affected by the enzyme (28.6 and 25.7% hydrolysis, respectively). After cell treatment with phorbol 12-myristate 13-acetate, inducing protein kinase C activation, GT1b and GD1a ganglioside susceptibility to sialidase was strongly decreased (8.6 and 15.9% hydrolysis, respectively). A reduction of ganglioside hydrolysis was also observed when protein kinase C activation was induced by cell treatment for 15 min with 100 microM glutamate. On the contrary, accessibility did not vary when protein kinase C translocation was not effective (either in the absence of Ca2+ in the medium or using 1 microM glutamate) or when the kinase activity was inhibited by staurosporine. These data suggest that following PKC activation, a key step of inbound transmembrane signaling, cell may dispatch outbound messages to the plasma membrane outer layer, changing the selective recognition and crypticity of glycolipids at the cell surface, possibly through a modulation of their segregation state.  相似文献   

6.
The patterns of ganglioside profiles were studied in 10 human glioma and one melanoma cell lines. Ganglio-series gangliosides, GM3 (NeuAc alpha2-3Gal beta1-4Glc beta1-Cer) and GM2 (GalNAc beta 1-4 (NeuAc alpha2-3)Gal beta1-4Glc beta 1-1Cer), and a neolacto-series ganglioside, sialylparagloboside (SPG) (NeuAc alpha 2-3Gal beta1-4GlcNAc beta1-3Gal beta1-4Glc beta1-1Cer), were the predominant constituents. The activities of the two key enzymes, GM3 synthetase and lactotriaosyl ceramide (Lc3Cer) synthetase, alone did not account for the ganglioside profile. Metabolic labeling with the use of [3H]glucosamine-HCl showed more pronounced difference in the synthetic rate of each ganglioside type, in which GM2 was the most strongly labeled in 7 out of the 10 glioma cell lines. On quantifying the chemical content of GM3 and GM2, the GM3/GM2 molar ratio of above 2.0 was arbitrarily classified into GM3 dominant type (KG-1C and Mewo); the ratio below 0.5 was designated as GM2 dominant type (H4, U138MG, U373MG, T98G and A172); and the ratio between 0.5 and 2.0 was regarded as GM3 and GM2-co-dominant type (U87MG, Hs683, SW1088 and U118MG). Subsequently, the capabilities of the antibody binding to these gangliosides were examined in native forms in the cell membrane and in chemically-isolated forms. The intensity of reaction against chemically isolated GM3 and GM2 gangliosides was dependent on the quantity, and GM2 was more reactive than GM3; however, the reactivities on the cell surface did not correlate with the chemical content indicating other factors to influence their immunoreactivities.  相似文献   

7.
Ganglioside stimulated neurite outgrowth may be due to ganglioside binding to membrane proteins or to intercalation into the membrane. To test that ganglioside binding proteins could be found on neuronal surfaces, anti-idiotypic ganglioside monoclonal antibodies (AIG mAbs) were generated to mimic the biological properties of the GM1 ganglioside. The AIG mAbs were identified by their ability to bind to a known GM1 binding protein, the beta-subunit of cholera toxin. For the two AIG mAbs studied, AIG5 and AIG20, binding to beta-CT was blocked most strongly by GM1. This data also suggests that AIG5 and AIG20 mimic different but overlapping epitopes of the ganglioside GM1. Western blotting and immunoprecipitation of mammalian tissues reveals four potential ganglioside binding proteins of molecular weight 93, 66, 57, and 45 kDa. Immunocytochemistry demonstrates neuronal surface label with the AIG mAbs, which suggests that gangliosides, enriched on the neuronal surface membrane, are co-localized with putative ganglioside binding proteins. In bioassays, the AIG mAbs promote neuronal sprouting. This shows that these antibodies can be used to study the biological effects of ganglioside binding to neuronal surface proteins, and the role of gangliosides in the activation of neurite outgrowth.  相似文献   

8.
9.
Ganglioside expression of embryonic chick retina cells developed in vitro was analyzed by indirect immunofluorescence. Immature neurons were GD3 positive cells and the labeling was chiefly distributed all over their cell membrane. Mature neurons became GD3 negative and expressed complex gangliosides of the a- and b-pathways; nevertheless, the content of GD3 accounted for approximately 40% of the total gangliosides in these cells. Neuraminidase hydrolysis pointed out that GD3 was located in membrane of differentiated cells. The frequency of cells with the GD3 immunostain localized in restricted area of membrane of undifferentiated neurons increased significantly after adding a mixture of bovine brain gangliosides (largely complex gangliosides). Antibody binding to immobilized GD3 showed a dose-dependent inhibition by adding a mixture of bovine brain gangliosides, GM1, GD1a or asialo-GM1. Glycosphingolipids with shorter oligosaccharide chains, as cerebrosides or sulfatides, did not affect this binding. These results suggest that, concomitant with the accretion of content of complex gangliosides, a rearrangement in the membrane would occur, which progressively masks GD3 to its antibody. This rearrangement might affect putative ganglioside functions involved in neuronal differentiation.  相似文献   

10.
The natural sialidase of Clostridium septicum was purified and characterized in parallel with the recombinant enzyme expressed by Escherichia coli. The two enzymes exhibit almost identical properties. The maximum hydrolytic activity was measured at 37 degrees C in 60 mM sodium acetate buffer, pH 5.3. Glycoproteins like fetuin and saponified bovine submandibular gland mucin, most of them having alpha(2-6) linked sialic acids, are preferred substrates, while sialic acids from gangliosides, sialyllactoses, or the alpha(2-8) linked sialic acid polymer (colominic acid) are hydrolysed at lower rates. alpha(2-3) Linkages are more rapidly hydrolysed than alpha(2-6) bonds of sialyllactoses. The cleavage rate is markedly reduced by O-acetylation of the sialic acid moiety. These properties are similar to those of other secreted clostridial sialidases. The enzyme exists in mono-, di- and trimeric forms, the monomer exhibiting a molecular mass of 125 kDa, which is close to the protein mass of 111 kDa deduced from the nucleotide sequence of the cloned gene.  相似文献   

11.
GM1 ganglioside carrying a fluorescent fatty acid in substitution of the natural one, has been administered to cultured Madin-Darby canine kidney (MDCK) cells for different pulse times (0.5-24 h), and its metabolic fate was followed. The fluorescent GM2, asialo-GM2, asialo-GM1 and ceramide were the only detectable metabolites. The complete absence of fluorescent GM3 is consistent with the presence in these cells of a sialidase working on GM1 and GM2 gangliosides. After treatment of the cells with chloroquine the fluorescent GM1 remained essentially undegraded, indicating a catabolic processing at lysosomal level.  相似文献   

12.
An allelic variant of the ouabain-insensitive rat kidney Na+,K(+)-ATPase alpha 1-isoform was identified by chance in a cDNA library. The variant differed from the wild-type rat kidney Na+,K(+)-ATPase by a single G-to-C base substitution in the cDNA, which on amino acid level gave rise to a glutamine in place of the glutamate residue Glu329 previously suggested as a likely donator of oxygen ligands for Na+ and K+ binding. The variant cDNA was transfected into COS-1 cells and the transfectants expanded with success into stable cell lines that were able to grow in the presence of a concentration of ouabain highly cytotoxic to the parental cells containing only the endogenous COS-1 cell Na+,K(+)-ATPase. Under these conditions, the viability of the cells depended on the cation transport mediated by the ouabain-insensitive Glu329-->Gln variant, whose cDNA was shown by polymerase chain reaction amplification to be stably integrated into the COS-1 cell genome. The maximum specific ATP hydrolysis activity of isolated plasma membranes of the Glu329-->Gln variant did not differ significantly from that of plasma membranes containing the wild type. A method was established for measurement of the phosphorylation capacity of the expressed Glu329-->Gln variant and wild-type enzyme, and it was thereby demonstrated that the variant had a turnover number similar if not identical to that of the wild-type.  相似文献   

13.
Cell differentiation is frequently accompanied by alterations in the composition of gangliosides in the plasma membrane resulting from a regulation of the enzyme activities involved. The regulation of CMP-NeuAc:GM1 alpha2-3-sialyltransferase (ST-IV) and UDP-GalNAc:GM3 N-acetylgalactosaminyltransferase (Gal-NAc-T) by the degree of enzyme phosphorylation was analyzed by determination of the enzyme activity on incubation of NG108-15 cells with various protein phosphatase inhibitors (okadaic acid and orthovanadate) or protein kinase activators (phorbol ester and forskolin). Incubation with okadaic acid, but not with orthovanadate, inhibited the ST-IV activity to 45% of that of control cells with t(1/2) = 60 min for the inactivation reaction. This indicates a rapid hyperphosphorylation of ST-IV due to the inhibition of a serine/threonine-specific phosphatase. A similar rate of inactivation was found on stimulation of protein kinase C with phorbol ester. In contrast to ST-IV, the activity of GalNAc-T was increased on stimulation of intracellular phosphorylation systems. The fastest activation of GalNAc-T was achieved with forskolin, yielding up to 160% of the initial activity within 30 min of effector incubation. Up-regulation of GalNAc-T in conjunction with down-regulation of ST-IV by stimulation of phosphorylation is suggested to serve as a physiological mechanism to increase the concentration of GM1, which was found to be elevated in correlation with the cell density. This assumption was corroborated by metabolic labeling studies with radioactive ganglioside precursors indicating an enhancement of the relative amount of a-series gangliosides subsequent to GM3 on phosphorylation stimulation. In particular, the biosynthesis of GM1 was specifically elevated within 2 h of incubation with forskolin. We conclude from the overall data that the ganglioside composition during the cell differentiation of NG108-15 cells can be specifically regulated by both protein kinase A- and protein kinase C-related phosphorylation systems.  相似文献   

14.
15.
The inhibitory effects of various sulfated compounds on the activities of sialidases purified from porcine liver and human placenta were investigated. Among the sulfated compounds tested, heparin, dextran sulfate, condroitin sulfates and sulfatide significantly inhibited the 4-methylumbelliferyl-alpha-N-acetylneuraminic acid (4-MU-NeuAc) sialidase activities of the two enzyme preparations, but glucose 6-sulfate and glucosamine 6-sulfate did not. Potassium sulfate showed an inhibitory effect only at high concentrations. When the sialidase activities were measured using natural substrates, the sialidase activities for the (alpha2-3) and (alpha2-6) sialyllactoses, and colominic acid, were markedly inhibited by heparin and sulfatide similar to 4-MU-NeuAc, although the fetuin sialidase activity was not significantly influenced by them. The sialidase activity hydrolyzing GM3 was strongly inhibited by heparin, but not by sulfatide.  相似文献   

16.
The present study determines the affinity of cholera toxin for the ganglioside series GM1, GM2, GM3, GD1A, GD1B, GT1B, asialo GM1, globotriosyl ceramide, and lactosyl ceramide using real time biospecific interaction analysis (surface plasmon resonance, SPR). SPR shows that cholera toxin preferably binds to gangliosides in the following sequence: GM1 > GM2 > GD1A > GM3 > GT1B > GD1B > asialo-GM1. The measured binding affinity of cholera toxin for the ganglioside sequence ranges from 4.61 x 10-12 M for GM1 to 1.88 x 10-10 M for asialo GM1. The picomolar values obtained by surface plasmon resonance are similar to Kd values determined with whole-cell binding assays. Both whole-cell assays and SPR measurements on synthetic membranes are higher than free solution measurements by several orders of magnitude. This difference may be caused by the effects of avidity and charged lipid head-groups, which may play a major role in the binding between cholera toxin, the receptor, and the membrane surface. The primary difference between free solution binding studies and surface plasmon resonance studies is that the latter technique is performed on surfaces resembling the cell membrane. Surface plasmon resonance has the further advantage of measuring apparent kinetic association and dissociation rates in real time, providing direct information about binding events at the membrane surface.  相似文献   

17.
18.
Sialidases (EC 3.2.1.18) are commonly found in viruses, bacteria, fungi, protozoa, and vertebrates, but not in invertebrates. We have previously reported the presence of a new sialidase activity in the gut of exclusively hematophagous insects of the Triatoma genus, which transmit Chagas' disease (Amino, R., Acosta, A., Morita, O. M., Chioccola, V. L. P., and Schenkman, S. (1995) Glycobiology 5, 625-631). Here we show that this sialidase is present in the salivary gland of Triatoma infestans, and it is released with the saliva during the insect bite. The sialidase was purified to homogeneity (>5000 times) to a specific activity of more than 20 units/mg. It elutes from a gel filtration column with a volume corresponding to the size of 33 kDa, and it migrates as a single 26-kDa band in SDS-polyacrylamide gel electrophoresis, which is unusually smaller when compared with other known sialidases. T. infestans sialidase hydrolyzes preferentially alpha2-->3-linked sialic acids at pH 4-8, with maximal activity between pH 5.5 and 6.5, which is compatible with the optimal pH of secreted sialidases. The sialidase is competitively inhibited by 2-deoxy-2, 3-dehydro-N-acetyl-neuraminic acid (Ki = 0.075 mM) and differently from many sialidases, with exception of Salmonella typhimurium sialidase, it is inhibited competitively by HEPES (Ki = 15 mM). The fact that T. infestans sialidase is released with the saliva and can hydrolyze sialyl-LewisX blood groups, which are the ligands for selectins, suggests that it might have a role in the blood feeding.  相似文献   

19.
Gangliosides are known to be differentiation-inducing molecules in mammalian stem cells. We studied the interaction between the molecular structure of glycosphingolipids (GSLs) and their promoting mechanisms of the phagocytic processes in human polymorphonuclear leukocytes (PMN). The effect of various gangliosides from mammalian tissues on adhesion, phagocytosis, phagosome-lysosome (P-L) fusion and superoxide anion production was examined by human PMN using heat-killed cells of Staphylococcus aureus-coated with GSLs. Gangliosides GM3, GD1a, GD3 and GT1b showed a marked stimulatory effect on the phagocytosis and P-L fusion in a dose-dependent manner, while ganglioside GM1, asialo GM1 and neutral GSLs did not. The relative phagocytic rate of ganglioside GM3-coated S. aureus was the highest among the tested GSLs. Both P-L fusion rate and phagocytosis of S. aureus were elevated significantly when coated with ganglioside GD1a, GD3 or GT1b, and GT1b gave a five times higher rate than that of the non-coated control. These results suggest that the terminal sialic acid moiety is essential for the enhancement of phagocytosis and that the number of sialic acid molecules in the ganglioside is related to the enhancement of the P-L fusion process. On the other hand, the superoxide anion release from PMN was not affected by ganglioside GM2, GM3, GD1a or GT1b. Furthermore, to clarify the trigger or the signal transduction mechanism of phagocytic processes, we examined the effect of protein kinase inhibitors such as H-7, staurosporine (protein kinase C inhibitor), H-89 (protein kinase A inhibitor), genistein (tyrosine kinase inhibitor), ML-7 (myosin light chain kinase inhibitor), and KN-62 (Ca2+/calmodulin-dependent protein kinase II inhibitor) on ganglioside-induced phagocytosis. H-7, staurosporine and KN-62 inhibited ganglioside-induced phagocytosis in the range of concentration without cell damage, while H-89, genistein and ML-7 did not. Moreover, H-7 and KN-62 inhibited ganglioside-induced P-L fusion. These results suggest that protein kinase C and Ca2+/calmodulin-dependent protein kinase II may be involved in the induction of phagocytosis and P-L fusion stimulated by gangliosides.  相似文献   

20.
Prosaposin, the precursor of saposins A, B, C, and D, was recently identified as a neurotrophic factor in vitro as well as in vivo. Its neurotrophic activity has been localized to a linear 12-amino acid sequence located in the NH2-terminal portion of the saposin C domain. In this study, we show the colocalization of prosaposin and ganglioside GM3 on NS20Y cell plasma membrane by scanning confocal microscopy. Also, TLC and western blot analyses showed that GM3 was specifically associated with prosaposin in immunoprecipitates; this binding was Ca2+-independent and not disassociated during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The association of prosaposin-GM3 complexes on the cell surface appeared to be functionally important, as determined by differentiation assays. Neurite sprouting, induced by GM3, was inhibited by antibodies raised against a 22-mer peptide, prosaptide 769, containing the neurotrophic sequence of prosaposin. In addition, pertussis toxin inhibited prosaptide-induced neurite outgrowth, as well as prosaptide-enhanced ganglioside concentrations in NS20Y cells, suggesting that prosaposin acted via a G protein-mediated pathway, affecting both ganglioside content and neuronal differentiation. Our findings revealed a direct and tight GM3-prosaposin association on NS20Y plasma membranes. We suggest that ganglioside-protein complexes are structural components of the prosaposin receptor involved in cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号