共查询到18条相似文献,搜索用时 54 毫秒
1.
以氧气作氧化剂,甲酸作催化剂,N-甲基吡咯烷酮(NMP)作萃取剂,采用催化氧化反应与溶剂萃取相结合的方法对催化裂化柴油进行了氧化萃取脱硫实验。通过单因素实验考察了催化剂用量,催化氧化温度、时间、氧气压力及萃取剂的用量等对催化裂化柴油硫含量的影响。通过实验得出最适宜的脱硫条件为:反应温度80℃;反应时间90min;充氧压力0.6MPa;催化剂体积分数为10%。经催化氧化,柴油硫质量分数可从1694.2μg/g降到190.8μg/g,脱硫率达到88.7%;在剂油比为1.0和室温条件下,用NMP三级萃取,柴油硫质量分数为37.5μg/g,小于50μg/g,达到欧Ⅳ排放标准的要求。 相似文献
2.
以石油醚为溶剂,二苯并噻吩为模型硫化物,配制成模拟油,在螺线管磁场中对油品进行氧化脱硫实验。结果表明,在外加磁场作用下,以30%过氧化氢为氧化剂,当电流强度为11 A、剂油比3.0、反应温度0 ℃、反应时间60 min时,模拟油中的硫含量可以从1 000μg/g降至118 μg/g。对于硫含量为5 647μg/g的催化裂化柴油(25 mL),在氧化剂过氧化氢(30%)用量5 mL、反应时间60 min、反应温度0 ℃、螺线管电流强度为11 A的条件下,催化裂化柴油的平均脱硫率为70.3%;而无磁场时催化裂化柴油的平均脱硫率为67.2%。 相似文献
3.
催化裂化柴油深度加氢脱硫反应动力学模型的研究 总被引:20,自引:1,他引:20
以催化裂化柴油为原料,在滴流床反应器中,考察了温度、压力、空速、氢油比等操作参数对RN-1催化剂深度加氢脱硫反应活性的影响,建立了催化裂化柴油加氢脱硫反应的表观动力学模型,并在此基础上,以神经网络的计算手段研究了原料油性质对脱硫反应的影响。结果表明,神经网络系统对试验数据的处理有很好的准确性,对新原料油试验结果的预测有较好的可靠性。 相似文献
4.
柴油氧化脱硫技术研究进展 总被引:21,自引:2,他引:21
柴油低硫化及其含硫标准的日趋严格,是世界各国柒油产品质量与标准的发展趋势。加氢脱硫技术生产低硫柴油,由于装置投资大、操作费用高,导致柴油生产成本大幅攀升。柴油氟化脱硫技术汇聚了人们关注的目光,已成为研究热点。本文综述了国内外柴油氧化脱硫技术的研究进展,认为现有的柴油氧化脱硫技术仍存在生产成本、柴油收率和氧化态含硫化合物的出路等技术经济问题。介绍了作者开发的支信柴油催化氧化脱硫技术(非H202法)的研究成果,该法克服了FCC柴油或出厂柴油原料H2O2氧化法脱硫技术的缺点。认为柴油氧化脱硫技术将成为今后生产超低硫清洁柴油的主要工艺之一。 相似文献
5.
Span-60乳化剂用于流化催化裂化柴油氧化脱硫 总被引:2,自引:1,他引:2
以Span-60为乳化剂、双氧水为氧化剂、固载磷钨酸的半焦为催化剂,对流化催化裂化(FCC)柴油进行氧化脱硫;考察了反应时间、反应温度、Span-60乳化剂用量和双氧水用量对脱硫率的影响。实验结果表明,FCC柴油氧化脱硫的优化反应条件为:反应时间60m in、反应温度60℃、Span-60乳化剂用量(基于FCC柴油的质量分数)0.6%、双氧水用量(基于FCC柴油的质量分数)2%、催化剂用量(基于FCC柴油的质量分数)1.2%。在此条件下对FCC柴油进行氧化脱硫,FCC柴油中的硫含量由1 400μg/g降至84μg/g,脱硫率达94%。气相色谱分析结果显示,氧化脱硫后FCC柴油中的苯并噻吩衍生物、二苯并噻吩及其衍生物基本上被脱除。 相似文献
6.
7.
FCC柴油氧化萃取深度脱硫工艺研究 总被引:1,自引:0,他引:1
以氧气作氧化剂、甲酸作催化剂、N-甲基吡咯烷酮作萃取剂,采用催化氧化反应与溶剂萃取相结合的方法对催化裂化柴油进行了氧化萃取脱硫实验。考察了催化剂用量、催化氧化温度、反应时间、氧气压力及萃取剂的用量等对催化裂化柴油脱硫率的影响。结果表明,在反应温度为80℃、反应时间为90min、充氧压力为0.6MPa、催化剂与油体积比为10%的条件下,柴油经催化氧化脱硫后,硫含量可从1694.2μg/g降到190.8μg/g,脱硫率达到88.7%;在萃取剂油体积比为1.0和室温条件下,用N-甲基吡咯烷酮萃取3次,再经硅胶吸附后柴油硫含量为37.5μg/g,柴油收率为94%,达到欧Ⅳ排放标准小于50μg/g的要求。 相似文献
8.
FCC柴油催化氧化萃取脱硫的研究 总被引:2,自引:0,他引:2
分别以硬脂酸钴、硬脂酸锰、氯化亚铁、醋酸钴、醋酸锰为催化剂,冰醋酸为溶剂,双氧水为氧化剂,考察了5种催化剂对FCC柴油中硫化物的脱除效果。研究结果表明,硬脂酸钴催化剂脱硫效果明显,在适宜的操作条件下,可使沧州炼油厂FCC柴油硫含量由2239μg/g降至683μg/g,脱硫率达到69.5%。 相似文献
10.
11.
12.
直馏柴油的选择性催化氧化脱硫 总被引:10,自引:7,他引:10
柴油非加氢脱硫技术已成为研究热点。采用专用的柴油均相催化氧化脱硫催化剂TS-1和纯O2对直馏柴油进行催化氧化脱硫,可达到很好的脱硫效果,且投资小,容易操作。但此法得到的脱硫柴油酸值较大。加入硼酸可以选择性地催化氧化柴油脱硫,抑制烃类化合物的深度氧化,降低脱硫柴油的酸值,且其硫含量也可达到欧洲Ⅱ类柴油标准(总硫的质量分数少于300μg/g)。实验结果表明,选择性催化氧化脱硫(硼酸用量为2%)使柴油中硫的质量分数从2217.2μg/g下降到271μg/g,酸值下降了89.2%;与非选择性催化氧化脱硫相比,脱硫柴油收率提高了2.2%。 相似文献
13.
通过氧气氧化及萃取脱硫实验、脱硫率模型和汽油收率模型建立,以及模型预测分析,开展催化汽油脱硫数学模拟研究。结果表明,随着催化剂用量增加、氧化温度提高、氧气分压增大、氧化时间延长汽油脱硫率均持续增加,而汽油收率持续降低,硫化物的非催化和催化氧化反应对汽油脱硫均有贡献。依据反应动力学和萃取相平衡原理,确定了脱硫率和汽油收率模型。通过模型参数估值,确定了有关萃取相平衡常数、氧化反应速率常数。建立的脱硫率和汽油收率模型在显著性水平α=0.01时均是显著的,具有较高的模拟计算精度。研究表明,模型预测结果与实验结果的变化趋势相同;适当降低催化剂用量和强化其它氧化条件,以及适当提高萃取油剂体积比,可以达到一定的脱硫率和较高的汽油收率。 相似文献
14.
FCC柴油催化氧化深度脱硫的研究 总被引:17,自引:0,他引:17
在实验室进行了过氧化氢在甲酸和亚铁离子的催化作用下偶合氧化FCC柴油的深度脱硫试验。试验结果表明过氧酸和Fenton试剂偶合,能有效氧化FCC柴油中的有机硫化合物,经过二甲基甲酰胺萃取后可将FCC柴油中的硫由0.7268%降到114μg/g,脱硫率可达到98.43%。n(HCOOH)/n(H2O2),n(Fe2 )/n(H2O2),n(H2O2)/n(总硫)及温度和时间对氧化脱硫率均有影响,随着n(HCOOH)/n(H2O2)的增加,油回收率下降。 相似文献
15.
采用加氢柴油和加氢蜡油的混合物为原料,进行了小型催化裂化柴油加氢回炼试验,考察MIP-LTG技术的效果。结果表明,与加氢蜡油和加氢柴油各自单独反应叠加相比,采用混合原料进行催化裂化反应时,干气、油浆、焦炭等低价值产物产率降低,总液体收率增加0.97百分点。该技术在A企业催化裂化装置上的运行数据表明:混合原料中加氢柴油比例提高7百分点后,反应的总液体收率增加1.55百分点,干气产率降低0.31百分点,汽油研究法辛烷值(MON)提高0.6个单位;在B企业催化裂化装置上的运行数据表明:在原料性质变差的情况下,加氢柴油比例提高11百分点后,反应的总液体收率增加0.2百分点,干气产率降低0.69百分点,汽油RON提高1.1个单位。工业应用结果表明,MIP-LTG技术路线简单,对加氢柴油的转化效果较好。 相似文献
16.
以四甲基乙二胺和溴代十六烷为原料,合成了一种季铵盐双子表面活性剂,简记为TTL(16-2-16),其表面活性cmc=0.1mmol/L,γcmc=32.5mN/m;TTL(16-2-16)做为相转移催化剂加入到H2O2/CH3COOH体系中,优化得到了催化氧化脱硫的适宜反应条件:V(H2O2)∶V(CH3COOH)=3∶1,V(氧化体系)∶V(柴油)=1∶1,反应时间为60min,反应温度为45℃,TTL(16-2-16)的用量为0.25%,在此条件下的柴油的硫含量可降至44μg/g,脱硫率为94.0%。 相似文献
17.
考察了催化裂化催化剂中添加烟气脱硫脱硝助剂后对催化裂化反应性能的影响,探讨了该混合催化剂(简称混合剂)返回催化裂化装置的可行性。固定流化床反应装置(FFB)试验结果表明:以安庆蜡油为原料,催化剂CGP-C中添加质量分数为4.2%不同类别的脱硫脱硝助剂后,对催化裂化反应产物中裂化气和柴油的收率、液体产品的硫含量等均造成一定程度的影响。催化裂化小型评价装置(ACE)试验结果表明:添加助剂RESN-3的质量分数不大于2%时对催化裂化反应的影响较小或没有影响,混合剂返回催化裂化装置再生具有可行性。 相似文献