首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
采用王水和氟化铵在微波消解仪中消解样品,建立了火焰原子吸收光谱法测定铅烟灰和铅泥中银的方法。考察了溶样方法、消解试剂、微波消解程序、盐酸浓度和干扰离子对测定的影响。结果表明,以王水和氟化铵为消解试剂,采用三步消解程序即60℃、8 atm/1 min, 70℃、13 atm/2 min, 100 ℃、20 atm/3 min,效果最佳;铅泥和铅烟灰中的铜对银的测定没有影响;银浓度在0.2~10 μg/mL范围内与吸光度呈线性关系,方法检出限为0.03 μg/mL。采用本方法对铅烟灰和铅泥样品中的银进行分析,测得结果与常规溶样-原子吸收光谱法基本吻合,相对标准偏差(RSD,n=5)为1.1%~1.3%。  相似文献   

2.
烧结机头电除尘灰中含量较高的碳硫物质极易吸附烧结机头电除尘灰样品溶解液中Au(Ⅲ),对Au的测定影响严重,若采用焙烧的方法直接去除碳硫,因样品中碱金属含量高,极易烧结成块,不仅不能完全去除碳硫物质,反而给溶样造成困难。针对这一问题,实验提出了采用无水乙醇对样品进行浸泡后再焙烧的方法去除碳硫物质,然后再采用NaCl-NaF-KMnO4-王水(1+1)体系处理样品,以活性炭富集Au,建立了火焰原子吸收光谱法(FAAS)测定烧结机头电除尘灰中Au的方法。实验表明,在30 g样品中加入30 mL无水乙醇进行浸泡,低温加热10 min,经抽滤烘干后,置于马弗炉于700 ℃焙烧1 h,冷却,加入10 g NaCl、0.5 g NaF、1 g KMnO4、80 mL王水(1+1),加热微沸30 min可将样品溶解完全。Au质量浓度在0.5~4.0 μg/mL范围与其吸光度呈良好的线性关系,线性相关系数为0.999 2,方法检出限为0.12 μg/mL。干扰试验表明,经活性炭富集分离后,共存元素对Au测定的干扰可忽略。采用实验方法对烧结机头电除尘灰实际样品中金进行测定,结果与火试金-重量法一致,相对标准偏差(RSD,n=6)小于5.0%。  相似文献   

3.
银侧吹炉烟灰样品结构较为复杂,硝酸-酒石酸溶解样品-EDTA滴定测定其中的铋时,样品消解不完全,终点不稳定,测定结果偏低。为了准确测定银侧吹炉烟灰中的铋,试验建立了硝酸-盐酸-氢氟酸-高氯酸消解银侧吹炉烟灰,选择Bi190.234 nm为分析线,使用电感耦合等离子体发射光谱法(ICP-AES)测定银侧吹炉烟灰的铋的方法。试验讨论了溶样方法的选择,介质及加入量的选择,共存元素干扰情况对铋测定结果的影响。结果表明:采用硝酸-盐酸-氢氟酸-高氯酸消解样品能使样品消解完全,加入25mL王水后进行测定结果稳定,共存元素对铋测定结果无影响。铋在0~15μg/mL的校正曲线关系良好,相关系数为0.999998,方法检出限为0.017μg/mL。取不同银侧吹炉烟灰样品进行精密度考察,铋测定结果的相对标准偏差(RSD,n=12)在0.19%~0.58%之间,加标回收率在99.49%~100.25%之间。  相似文献   

4.
原子吸收光谱法连续测定金精矿中的银铜铅锌   总被引:1,自引:0,他引:1  
孔令强  李伟彦  邵国强 《黄金》2016,(11):73-75
针对金精矿日常化验中银、铜、铅、锌需分别溶样测定,浪费人力、时间,采用火焰原子吸收法一次溶样连续测定样品中的银、铜、铅、锌。金精矿采用盐酸-硝酸-氢氟酸-高氯酸混酸完全消解,盐酸(1+9)溶液定容,原子吸收光谱法进行测定。该方法加入标准物质回收率为96.9%~107.7%,相对标准偏差RSD(n=7)为1.17%~7.07%,检出限分别为Cu 0.001 5μg/m L、Pb 0.029 9μg/m L、Zn 0.011 2μg/m L、Ag 0.001 9μg/m L。该方法对金精矿中银、铜、铅、锌的测定结果与国家标准方法测定值相符。  相似文献   

5.
采用微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)对废电路板中18种主要金属元素进行定量分析。根据样品中被测元素的溶解特点,分别采用硝酸-氢氟酸-高氯酸-硼酸和王水-氢氟酸-高氯酸-硼酸两种混酸消解体系,在逐级升压的模式下进行样品的微波消解。通过基体匹配、元素分组进样、谱线优选的方法基本消除了测定过程中各元素之间可能存在的干扰。通过加标回收和与化学法、原子吸收法的对比分析,验证了方法的可靠性和准确性。实验表明,除基体铜外其他17种元素均能用本法测定。本方法检出限为1.1~24μg/L,用于废电  相似文献   

6.
以王水为消解体系,采用3步程序升温微波消解法处理样品,选择8%(体积分数)王水为测定介质,实现了火焰原子吸收光谱法(FAAS)对铜精矿样品中1.6~600.0g/t银的测定。干扰试验表明,样品中的铜和铁对银测定的干扰可忽略。在选定的实验条件下,以银质量浓度为横坐标,测得的吸光度为纵坐标绘制校准曲线,其线性相关系数为0.9998。方法检出限为1.6g/t。采用实验方法对3个铜精矿标准物质分别测定11次,测定值与认定值一致,相对标准偏差(RSD)为0.23%~0.66%。选取5组不同银含量的铜精矿样品,按照实验方法测定,并根据测得银含量的不同范围,分别与国标方法GB/T 3884.2—2012中的酸溶-FAAS和火试金-滴定法测得结果进行对比,结果表明,二者基本吻合。  相似文献   

7.
文章介绍了用原子荧光光谱法测定活性炭废物中砷的方法,对仪器的工作条件进行了优化选择,并对王水微波消解前处理测定方法和硝酸-高氯酸-氢氟酸电热板前处理测定方法进行了对比试验。结果表明:硝酸-高氯酸-氢氟酸电热板前处理-原子荧光光度法测定砷,前处理样品能够消解彻底,测定结果稳定,重现性好,适用于实际样品的分析测定。  相似文献   

8.
火焰原子吸收光谱法测定铟的方法探讨   总被引:5,自引:0,他引:5  
试验了火焰原子吸收光谱法测定铟的最佳介质及共存元素干扰情况。建立了以王水溶解试样,在5%硝酸介质中,使用空气-乙炔火焰,于原子吸收光谱仪波长303.9 nm处测定铟的分析方法。铟的测定范围为0.01%~6.0%,线性范围2.5~60μg/mL,回收率为93.3%~105%。  相似文献   

9.
活性炭样品经550 ℃高温焙烧后,以硝酸、氢氟酸和盐酸的混酸作为消解试剂,用微波消解法消解,电感耦合等离子体原子发射光谱法(ICP-AES)测定消解液中铁、锌、钙、镁和铅金属元素含量。试验结果表明:样品经高温焙烧后基体元素碳已除去,对测定没有干扰,因此可以直接用待测元素的标准溶液绘制校准曲线,不需要进行基体匹配。共存元素由于含量很低,在所选定的分析线下测定也没有干扰。方法的检出限如下:铁为0.02 μg/mL,锌为0.01 μg/mL、钙为0.01 μg/mL、镁为0.02 μg/mL,铅为0.05 μg/mL。样品测定结果的相对标准偏差(RSD)在1.7%~4.1%之间(n=9),回收率在94%~96%之间。  相似文献   

10.
银精矿在供需双方交易和生产工艺流程的确定时,其中相关元素如铋的含量起着重要作用。实验对标准YS/T 445.11—2001中溶样方法进行了改进,即用氯酸钾-硝酸-氢氟酸-硫酸-盐酸溶样体系代替了氯酸钾-硝酸-硫酸-王水溶样体系进行溶样,以硫脲-抗坏血酸为预还原试剂,硼氢化钾为还原剂,5%(体积分数)盐酸为测定介质,实现了氢化物发生-原子荧光光谱法对银精矿中铋的测定。在选定的工作条件下,铋质量浓度在20.0~200.0ng/mL范围内呈线性关系,相关系数为0.9994。按照银精矿中主要共存元素的最大含量分别进行干扰试验,结果表明其对铋测定的干扰均可忽略。方法检出限为2×10-5 μg/mL。对铋质量分数为0.010%~0.50%的银精矿样品进行分析,测定结果与火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法结果基本一致,相对标准偏差(RSD,n=9)为1.9%~10.6%,回收率为99%~102%。  相似文献   

11.
采用盐酸、硝酸溶解样品, 加入氢氟酸和高氯酸, 加热蒸发至干, 以除去四氟化硅和过剩的氢氟酸, 然后以稀盐酸溶解可溶性盐类, 用火焰原子吸收光谱法测定溶液中的铜。考察了不同比例的混合酸溶解样品的效果, 对测定介质种类、酸度和共存元素的干扰进行了试验。结果表明:盐酸+硝酸+氢氟酸+高氯酸可以将样品消解完全;2.5%(体积分数)以内的盐酸介质不影响铜的测定;在100mL溶液中, 40mg镍、1mg钴、10mg铬对0.02mg铜的测定没有影响;200mg的铁对0.02mg以上的铜的测定也没有影响, 但不同量的铁对0.01~0.02mg铜的测定有所影响, 因此测定低含量铜时可采用在空白溶液中加入铁基体的方法消除干扰。铜的检出限为0.011μg/mL, 测定下限为0.038μg/mL。方法用于镍基体料实际样品分析, 测定结果的相对标准偏差(n=11)在1.7%~2.0%范围, 加标回收率在98%~108%之间。  相似文献   

12.
采用7mL王水-2mL氢氟酸-2mL高氯酸-5mL硝酸体系对样品进行处理,选用45Sc为内标校正27Al、47Ti、24Mg、39K和43Ca,选用72Ge为内标校正57Fe、53Cr、55Mn和63Cu,选用103Rh校正208Pb和111Cd,建立了电感耦合等离子体质谱法(ICP-MS)测定水泥中氧化铝、二氧化钛、氧化铁、氧化镁、氧化钾、氧化钙、铅、镉、铬、锰、铜等11种组分的方法。实验表明,在样品中加入7mL王水和2mL氢氟酸,置于80℃电加热装置上预处理20min,放入微波消解仪中进行消解,消解后样液中加入2mL高氯酸于160℃进一步消解样品并驱除多余的氢氟酸,再加入5mL硝酸驱除多余的高氯酸,可将样品溶解完全。在选定的实验条件下,各组分相应校准曲线的相关系数均不小于0.9996。按照实验方法对两种水泥标准物质GBW 03204b和GBW 03203b中的11种组分分别进行了8次平行测定,并分别加入铅、镉、铬、锰、铜的单元素标准溶液进行加标回收试验,所有组分测得结果的相对标准偏差(RSD,n=8)在3.7%~6.2%之间,氧化铝、二氧化钛、氧化铁、氧化镁、氧化钾、氧化钙的测定值与认定值基本一致,铅、镉、铬、锰、铜的加标回收率在87%~109%之间。  相似文献   

13.
孙宝莲  董岐  周恺  李波 《冶金分析》2017,37(3):44-47
采用15mL盐酸、5mL硝酸、3mL氢氟酸和5mL高氯酸分解试样,以5%(V/V)的高氯酸为测定介质,建立了火焰原子吸收光谱法(FAAS)测定铜磁铁矿中0.1%~2%铜的方法。干扰试验表明,铜磁铁矿中杂质元素在最大量存在的条件下不干扰铜的测定。在选定的实验条件下,铜校准曲线的相关系数为0.999 1,方法检出限为0.017μg/mL。将实验方法应用于5个铜磁铁矿样品中铜的测定,测得结果与电感耦合等离子体原子发射光谱法(ICPAES)基本一致,相对标准偏差(RSD,n=11)在1.2%~3.7%之间,加标回收率在96%~104%之间。分别在7家实验室采用实验方法进行测定,结果显示,实验方法的再现性限(R)在0.020%~0.118%之间。  相似文献   

14.
杜米芳 《冶金分析》1982,40(2):72-75
锆铪合金性能优异、应用广泛,其化学成分须准确测定。试验采用10mL盐酸-2mL氢氟酸-1mL硝酸消解样品,选择P 178.221nm、Fe 239.562nm、Hf 277.336nm为分析线并采用两点校正法扣除背景,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定锆铪合金中磷、铁、铪的分析方法。各元素校准曲线线性良好,相关系数均不小于0.999;方法测定范围为:0.002%~0.036%磷,0.01%~0.36%铁,1.00%~5.00%铪。方法中各元素检出限为0.000032%~0.0019%(质量分数)。按照实验方法测定1个锆铪合金样品中磷、铁、铪,测定结果的相对标准偏差(RSD,n=10)小于3%;回收率为94%~107%。  相似文献   

15.
杜米芳 《冶金分析》2020,40(2):72-75
锆铪合金性能优异、应用广泛,其化学成分须准确测定。试验采用10mL盐酸-2mL氢氟酸-1mL硝酸消解样品,选择P 178.221nm、Fe 239.562nm、Hf 277.336nm为分析线并采用两点校正法扣除背景,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定锆铪合金中磷、铁、铪的分析方法。各元素校准曲线线性良好,相关系数均不小于0.999;方法测定范围为:0.002%~0.036%磷,0.01%~0.36%铁,1.00%~5.00%铪。方法中各元素检出限为0.000032%~0.0019%(质量分数)。按照实验方法测定1个锆铪合金样品中磷、铁、铪,测定结果的相对标准偏差(RSD,n=10)小于3%;回收率为94%~107%。  相似文献   

16.
陈婷婷  刘俊  关明  杨忠  王婷 《冶金分析》2014,34(2):66-69
载金树脂物料经高温灰化后, 用王水溶解残渣, 选择328.628 nm波长的光谱线作为银的分析线, 采用电感耦合等离子体原子发射光谱法(ICP-AES)测定了试液中的银。金、铁、铝、硅、硫等基体元素产生的基体效应采用基体匹配的方法克服。方法的检出限为0.008 1 μg/mL, 样品测定结果的相对标准偏差在5.1%~7.3%范围, 回收率在93.4%~103.4%之间。方法简便、快速、可靠, 可用于进口载金树脂物料样品中银的测定。  相似文献   

17.
刘爱坤 《冶金分析》2015,35(9):42-46
采用王水并滴加氢氟酸溶解含铬镍生铁样品,高氯酸冒烟,采用标准样品/控制样品制作校准曲线,测定过程采用内标法,实现了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定含铬镍生铁中高镍、高铬以及锰、磷、钼、铜和钴等元素的测定。在仪器工作条件下,各元素校准曲线线性相关系数均大于0.999,其中镍元素线性相关系数达到0.999 9。方法中各元素的检出限为0.002 0~0.020 μg/mL。采用实验方法对含铬镍生铁实际样品中的镍、铬、锰、磷、钼、铜和钴含量进行测定,结果与国家标准化学分析方法基本一致,相对标准偏差(RSD,n=11)在0.53%~5.0%之间。  相似文献   

18.
苏凌云 《冶金分析》2014,34(11):69-72
铁矿中硫和磷是主要的有害成分,需对其进行准确测定。铁矿样品在低温下用逆王水和溴水溶解后,以P 213.618 nm 和S 182.034 nm作为分析谱线,建立了电感耦合等离子发射光谱测定铁矿石中硫和磷的分析方法。硫和磷检出限分别为0.019 μg/mL和0.004 μg/mL。试验表明:样品中钙、铁和铝对硫和磷的测定基本不产生干扰,铜对硫的测定也无干扰,而对磷的测定有干扰,但可通过扣除左背景的方法消除。对5种铁矿标准样品中硫和磷进行5次测定,测定值与认定值基本一致,相对标准偏差(RSD)分别在0.54%~3.1%和0.40%~3.0%范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号