首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
样品经盐酸溶解、阳离子交换树脂分离并将试液蒸发浓缩后,用石墨炉原子吸收光谱法测定了高纯铟中的痕量铅。探讨了溶样方法、离子交换分离和测定铅的条件。结果表明:用8 mL盐酸将1 g样品溶解,以0.5 mol/L 盐酸作为淋洗液进行离子交换可把绝大部分铟基体及样品中痕量的银、砷、镉、硅分离除去,随后用2.0 mol/L 盐酸可洗脱铅。干扰试验表明,铝、铜、铁、镁、镍、锡、铊、锌与小于10 μg的铟虽然不能与铅分离,但对测定无影响。当称样量为1 g,定容体积为1.0 mL,进样量为50 μL时,方法线性范围为0.5~4.0 ng/mL,测定下限为0.000 6 μg/g,比行业标准方法 YS/T 230.1-1994的0.1 μg/g低3个数量级。方法用于实际样品分析,结果与电感耦合等离子体质谱法(ICP-MS)相符,相对标准偏差(RSD,n=8)在1.1%~19.7%之间,加标回收率为92%~120%。  相似文献   

2.
选取具有代表性的不同镀层质量及不同铅含量的电镀锡板样品为校准样品, 采用欧盟BS EN 10333-2005(包装用钢-与人和动物用食品、产品和饮料接触的扁平钢制品-镀锡钢)标准要求的方法测定校准样品中镀锡层铅含量, 解决了电镀锡板校准样品短缺的问题, 并依此建立了X射线荧光光谱法直接测定电镀锡板样品中单位镀锡层质量中铅含量的分析方法。利用仪器自带的薄膜分析软件将样品分为两层(基板层和镀锡层)来逐层分析, 校正了基板中铅造成的测量干扰。采用仪器自带的基本参数法(FP)软件, 自动校正了单位镀锡层质量不同造成的锡元素干扰, 使校准曲线的相关系数达到0.993。结果表明, 方法适用于单位镀锡层质量为2.0 g/m2及以上, 基板厚度大于0.2 mm样品的测定。采用方法对电镀锡板实际样品进行分析, 测定结果与欧盟BS EN 10333标准方法吻合, 相对标准偏差(n=6)在4%~20%之间。  相似文献   

3.
共沉淀分离-原子荧光光谱法测定铜矿和铅锌矿中锡   总被引:1,自引:0,他引:1       下载免费PDF全文
铜矿、铅锌矿石样品经过盐酸、硝酸溶解,采用氢氧化铁共沉淀锡使其与铜、铅、锌分离,含锡沉淀经过氧化钠熔融,在硫酸介质中,加入硫脲-抗坏血酸-酒石酸掩蔽滞留在溶液中的干扰元素,然后用氢化物发生-原子荧光光谱法(HG-AFS)测定锡量。确定了锡与铜、铅、锌的分离条件:用氨水调节样品溶液pH 4.5;三价铁离子加入量为20 mg。方法测定范围为0.001%~1%,检出限为3 μg/g。对样品中共存离子进行了干扰试验,结果表明,经过共沉淀处理后,主量元素铜、铅和锌大部分已与锡分离,不干扰锡的测定;砷、锑的干扰可通过稀释或减小取样量去除;其他元素均不干扰锡的测定。采用实验方法对实际样品进行测定,并进行加标回收试验,回收率为95%~102%。经全国不同地区8家实验室采用铜矿石、铅锌矿石样品验证,方法精密度好。  相似文献   

4.
苏爱萍  海兰 《冶金分析》2012,32(11):67-71
建立了石墨炉原子吸收光谱法测定锡锭中痕量铝的方法,确定了样品分解方式和石墨炉原子吸收光谱测定铝的最佳条件。以盐酸-过氧化氢(V(盐酸)∶V(过氧化氢)= 2.5∶1.5)分解样品,在16 g/L柠檬酸、0.12 mol/L盐酸介质中,以4 g/L硝酸钙为基体改进剂进行铝的测定。结果表明:在选定的酸度介质中,不需要挥锡,锡不会水解,样品溶液保持清亮时间长;硝酸钙提高了测铝的灵敏度,并增强了抗氯化物干扰的能力;样品中锡及共存元素不干扰测定。该方法的检出限为2.96 μg/L,线性范围为0~100 μg/L,相关系数r≥0.998 0。方法用于锡锭中铝的测定,相对标准偏差为6.6%,回收率在100%~119%之间,样品测定值与标准加入法及ICP-AES法测定值相符。  相似文献   

5.
以硝酸(1+2)-盐酸(1+1)溶解样品,采用盐酸沉淀大部分铅及银,在16 g/L柠檬酸、0.12 mol/L盐酸介质中,取澄清液直接采用石墨炉原子吸收光谱法测定锡铅焊料中铝。结果表明:在选定的酸度介质中,不需要挥锡,锡也不会水解;大部分铅及银以氯化物形态沉淀于底部,无需用盐酸处理的脱脂棉-纸浆过滤分离银及铅沉淀,直接取澄清液进行测定即可;样品溶液保持清亮时间长,样品中锡及共存元素不干扰测定。方法线性范围为3.00~100.00 μg/L,检出限为4.04 μg/L。将方法应用于锡铅焊料标准物质中铝的测定,结果与认定值或GB/T 10574.13—2003采用的电感耦合等离子体原子发射光谱法(ICP-AES)一致,相对标准偏差为6.2%~8.9%。  相似文献   

6.
试验确定了直流电弧光谱法测定纯铌及铌制品中砷、铋、铅、锑、锡等待测元素的分析线波长、积分时间及背景点位置。方法中砷、铋、铅、锑、锡的检出限均小于2 μg/g。在选定的实验条件下测定自制样品中砷、铋、铅、锑、锡,结果的相对标准偏差(RSD,n=9)在6.5%~10%之间。按照实验方法对样品进行加标回收试验,回收率为82%~116%;自制样品的测定结果与理论值相吻合,并且测定结果与火花源原子发射光谱法、光栅光谱法的测定结果也基本一致。  相似文献   

7.
在盐酸介质中,氧化剂溴酸钾可氧化甲基绿褪色使其吸光度下降,铅离子对该反应有催化作用,据此,建立了溴酸钾氧化甲基绿褪色催化动力学光度法测定痕量铅的方法。取两支相同规格的具塞玻璃比色管,一支加入2.1 mL甲基绿溶液、1.0 mL盐酸、0.9 mL溴酸钾溶液、一定量铅标准溶液;另一支做空白对照,不加铅溶液。于100 ℃沸水浴反应10 min后,用紫外可见分光光度计分别测定催化体系(含铅)和非催化反应体系(不含铅)在最大波长631 nm处的吸光度,计算吸光度差值。结果表明,在0.004~0.12 μg/mL范围内,铅质量浓度与吸光度差值有良好的线性关系,相关系数r=0.999 7。催化反应的速率常数为3.5×10-1s-1,表观活化能为11.99 kJ/mol;方法检出限为2.8×10-3 μg/mL,方法定量限为9.5×10-3 μg/mL。将实验方法应用于测定生活污水和印染废水中铅,结果的相对标准偏差(RSD,n=6)为1.6%~3.6%,测得结果与原子吸收光谱法基本一致,加标回收率为95%~108%。  相似文献   

8.
研究了电解法除去大量基体铅后,采用火焰原子吸收光谱法测定高纯铅中痕量钙、镁和钠。对电解酸度,电解时间及铂电极的清洗进行探究,结果表明,选用HNO3(1+3)作为溶解电解样品的介质且电解时间为3 h,铅残余量最小;与盐酸清洗铂电极相比,采用20 g/L抗坏血酸-乙酸(φ=4%)混合溶液清洗铂电极可减小铂电极的损耗。铅中其他共存元素不干扰钙、镁、钠的测定,方法检出限分别为0.061μg/mL,0.006 6μg/mL,0.011μg/mL。对铅样中Ca,Mg,Na的测定,相对标准偏差为14%~19%,加标回收  相似文献   

9.
何梅 《冶金分析》2015,35(10):69-72
样品采用氢氧化钠-过氧化钠高温熔融,试液经盐酸-硝酸酸化,溶解完全后,选取Al 396.156 nm作为分析谱线,以电感耦合等离子体原子发射光谱法(ICP-AES)测定铜渣精矿中铝。为消除钠离子对测定的干扰,对溶液进行稀释并用基体匹配法配制标准系列溶液曲线,校准曲线线性相关系数为0.999 99;其他共存元素不干扰测定。方法中铝的检出限为0.007 8 μg/mL,测定下限为0.039 μg/mL。按照实验方法测定铜渣精矿实际样品,结果的相对标准偏差(RSD,n=7)为1.4%~2.0%,测定值与滴定法的测定结果基本吻合。  相似文献   

10.
甲基磺酸盐(MSA)体系电镀锡板在生产过程中,电镀液中的锡发生氧化会在阳极形成锡泥,这种固废产物中的重金属元素如果处理不当,将危害环境,因此准确测定电镀锡泥中金属元素的含量有利于指导其后续处理。实验采用硝酸-盐酸-氢氟酸并采用微波消解法对样品进行消解,可有效除去锡泥中有机物且不会造成待测元素的损失;采用基体匹配法消除基体效应的影响,选择Cu 324.754 nm、Ni 231.604 nm、Pb 220.353 nm、Sb 206.833 nm、Bi 190.241 nm为分析谱线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定MSA电镀锡泥中铜、镍、铅、锑、铋的方法。结果表明:在仪器最佳工作条件下,各元素校准曲线的线性相关系数均大于0.999 5,各元素检出限为0.000 2%~0.000 6%。按照实验方法测定MSA电镀锡泥中铜、镍、铅、锑、铋,结果的相对标准偏差(RSD,n=8)均小于3%,加标回收率为97%~104%。按照实验方法测定MSA电镀锡泥样品中铜、镍、铅、锑、铋,结果与火焰原子吸收光谱法测定铜、镍、铅,硫酸铈滴定法测定锑,EDTA滴定法测定铋的对比结果一致性较好。  相似文献   

11.
葛晶晶  刘洁 《冶金分析》2016,36(9):37-41
高纯锌中铁、铜、镉、锑、铅、锡、砷元素含量低,基体和多原子离子干扰严重,这使得溶样后直接采用电感耦合等离子体质谱法(ICP-MS)对这7种元素进行测定的难度较大。实验表明:采用15 mL硝酸(1+2)低温溶解0.100 0 g样品,不进行基体分离,通过优化仪器参数、选择合适的同位素避免质谱干扰,采用标准加入法绘制校准曲线消除基体效应,可实现电感耦合等离子体质谱法(ICP-MS)对高纯锌中铁、铜、镉、锑、铅、锡和砷共7种痕量元素的测定。各元素校准曲线的相关系数在0.995 8到0.999 7之间,方法检出限为0.05~7.53 μg/L。采用实验方法对高纯锌实际样品中铁、铜、镉、锑、铅、锡和砷进行分析,测得结果的相对标准偏差(RSD,n=11)为2.4%~5.3%,加标回收率为96%~109%。按照实验方法测定纯锌样品中7种痕量元素,砷测得结果与电感耦合等离子体原子发射光谱法(ICP-AES)基本一致,锡和锑与原子荧光光谱法(AFS)基本一致,铁、铜、镉和铅与采用锌基体分离—ICP-MS基本一致。  相似文献   

12.
提出了一种简单、快速和可靠的同时测定锌铝合金中锡、铅、铁的方法。用硝酸溶样后在1%(体积分数)硝酸介质中,以Sn 189.989 nm、Pb 220.353 nm和Fe 259.940 nm作分析线,用电感耦合等离子体原子发射光谱法(ICP-AES)测定。锡、铅和铁的检出限分别为0.02 μg/mL、0.03 μg/mL和0.002 μg/mL,样品中锡的加标回收率为100%,铅和铁的加标回收率均为110%。方法应用于锌铝合金中锡、铅和铁测定,测定值与国家标准方法的测定值一致,相对标准偏差分别为0.0%,3.0%和6.4%。  相似文献   

13.
采用硝酸(1+1)溶解样品,选择Pb 220.353 nm、Sn 189.927 nm、Si 251.611 nm、Zn 206.200 nm、Ni 231.604 nm、Mn 260.568 nm、Fe 259.939作为分析谱线,使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定了铝青铜中铅、锡、硅、锌、镍、锰、铁。试验探讨了铝青铜中基体元素对待测元素测定的影响,结果表明:通过基体匹配法绘制校准曲线消除了基体效应的影响。各元素的校准曲线线性相关系数均大于0.999;方法中各元素的检出限为0.9~20.8 μg/g。方法应用于铝青铜标准物质中铅、锡、硅、锌、镍、锰、铁的测定,结果的相对标准偏差(RSD,n=10 )在0.36%~4.0%之间,标准物质的测定值与认定值无显著性差异。按照实验方法对两个铝青铜QAl10-3-1.5产品中铅、锡、硅、锌、镍、锰、铁进行测定,加标回收率为90%~108%。  相似文献   

14.
采用电感耦合等离子体原子发射光谱(ICP-AES)法对高铬镍基合金690合金中微量钴的测定进行了研究。根据分析线的选择原则,选择背景相对较低、信噪比高的波长为228.616 nm谱线作为分析线。采用基体匹配的方法克服基体效应,多谱线拟合(MSF)法校正主量元素铁、铬和镍对分析元素钴的光谱干扰。方法的检出限为0.001 μg/mL,校准曲线的线性相关系数为0.999 9。方法用于690合金样品中钴的测定,结果与电感耦合等离子体质谱法相符,加标回收率为100.7% ~ 102.0%,相对标准偏差(n=8)小于 2.0%。  相似文献   

15.
胡建春  赵琎  张瑞霖 《冶金分析》2015,35(11):28-33
使用硝酸和高氯酸溶解氧化镍样品,溶液过滤后,采用恒电流电解重量法测定滤液中镍。加入10 mL 500 g/L柠檬酸铵,电解液酸度为pH 10,电解过程中所需的电解电流和电解时间为2 A/2 h。选择Ni 341.486 nm、Co 238.892 nm、Cu 324.752 nm、Zn 206.191 nm、Fe 259.940 nm、Mn 257.610 nm作为分析谱线,采用基体匹配法绘制校准曲线消除基体效应,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定沉积在铂阴极上的钴、铜、锌、铁、锰,并测定电解残余液和酸不溶残渣中的镍、锰、铁。镍、铁、锰含量分别为电解在铂阴极的镍、铁、锰,电解液中残余镍、铁、锰,残渣回收浸出液中镍、铁、锰共3个部分测定值的总和。实验方法各元素的检出限为0.002 4~0.020 μg/mL,校准曲线的线性相关系数均大于0.999。按照实验方法测定氧化镍样品中镍、钴、铜、锌、铁和锰含量,测定结果的相对标准偏差(RSD,n=10)在0.11%~7.5%之间。实验方法用于氧化镍样品的测定,结果与国标方法以及原子吸收光谱法的测定结果相吻合。  相似文献   

16.
冯宗平 《冶金分析》1982,39(11):57-62
准确、快速地测定铁矿中各种杂质元素含量,对铁矿石质量判定具有重要意义。试验采用“酸溶-碱熔回渣”的方法消解样品,先用硝酸、盐酸溶解样品,再过滤,滤渣及滤纸灰化后再用碳酸钠-硼酸混合熔剂熔融,溶液中的总固体溶解量(TDS)为2.5mg/mL。采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌等16种元素。各待测元素校准曲线的线性相关系数均大于0.999;方法检出限为0.00018%~0.034%。实验方法用于2个铁矿石实际样品中铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌的测定,结果的相对标准偏差(RSD,n=8)为0.40%~9.8%;按照实验方法测定4个铁矿石标准样品,测定值与认定值相吻合;测定4个铁矿石生产样品中铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌,测定值与GB/T 6730系列标准方法测定值相吻合。  相似文献   

17.
建立了电感耦合等离子体质谱法(ICP-MS)同时测定铁精矿中铬、砷、锡、镉、锑、铅和铋等元素含量的方法。确定使用无水碳酸钠和硼酸的混合熔剂于950 ℃熔融样品,用盐酸浸取熔融物以测定锡、锑、铋,用硝酸溶液浸取熔融物以测定铬、砷、镉、铅。优化了仪器的工作参数;通过选择合适的测定同位素消除了可能存在的质谱干扰;测定铬、砷、镉、锡、锑时选用铑内标,测定铅、铋时选用铊内标校正基体效应和仪器信号漂移。采用本方法对铁精矿样品进行分析,测得结果与电感耦合等离子体原子发射光谱法(ICP-AES)基本一致,相对标准偏差为4.3%~8.6%。  相似文献   

18.
冯宗平 《冶金分析》2019,39(11):57-62
准确、快速地测定铁矿中各种杂质元素含量,对铁矿石质量判定具有重要意义。试验采用“酸溶-碱熔回渣”的方法消解样品,先用硝酸、盐酸溶解样品,再过滤,滤渣及滤纸灰化后再用碳酸钠-硼酸混合熔剂熔融,溶液中的总固体溶解量(TDS)为2.5mg/mL。采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌等16种元素。各待测元素校准曲线的线性相关系数均大于0.999;方法检出限为0.00018%~0.034%。实验方法用于2个铁矿石实际样品中铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌的测定,结果的相对标准偏差(RSD,n=8)为0.40%~9.8%;按照实验方法测定4个铁矿石标准样品,测定值与认定值相吻合;测定4个铁矿石生产样品中铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌,测定值与GB/T 6730系列标准方法测定值相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号