首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 187 毫秒
1.
利用电感耦合等离子体原子发射光谱法(ICP-AES)测定高纯钼样品中杂质元素含量时,由于钼元素具有丰富的谱线,因此钼基体对待测元素干扰较大。为了消除钼基体对待测元素的干扰,实验使用过氧化氢溶解样品,过量硝酸沉淀分离钼基体作为样品前处理步骤,建立了基体分离-电感耦合等离子体原子发射光谱法测定高纯钼中钙、铬、铜、钴、镁、镍、锌、镉和锰的方法。使用4mL过氧化氢溶解样品,10mL硝酸沉淀钼基体,钼的沉淀效率大于99%,沉淀后,各待测元素背景等效浓度均有下降,且回收率都高于85%,随沉淀损失较少。使用高纯钼基体沉淀分离的方法配制校准曲线,各待测元素校准曲线线性相关系数均大于0.999 7;方法中各元素的定量限为0.20~2.03μg/g。实验方法用于测定高纯钼样品中钙、铬、铜、钴、镁、镍、锌、镉和锰,结果的相对标准偏差(RSD,n=5)为2.0%~4.8%,测定结果与电感耦合等离子体质谱法(ICP-MS)结果一致。  相似文献   

2.
刘锦锐  加明 《冶金分析》2021,41(8):76-83
准确、快速地测定光致发光材料钼酸钙中钨、钒、铜、锰、镍、铁、锡、锑、镁、镉、铝、铅、铋、铬、砷、钛、钴、钡、硅等19种微量杂质元素,对光致发光材料钼酸钙的质量判定有重要意义。选择过氧化氢-盐酸溶解体系对样品进行前处理;采用钼基体匹配法消除基体效应对测定的影响;通过选择合适的谱线消除光谱干扰;使用电感耦合等离子体原子发射光谱法(ICP-AES)测定光致发光材料钼酸钙中上述19种微量杂质元素。方法中各待测元素校准曲线的线性相关系数均大于0.999 0;方法中各元素检出限为0.2~4.4 μg/g。按照实验方法测定光致发光材料钼酸钙中钨、钒、铜、锰、镍、铁、锡、锑、镁、镉、铝、铅、铋、铬、砷、钛、钴、钡、硅,结果的相对标准偏差(RSD,n=8)为0.61%~6.8%;加标回收率为95%~105%。按照实验方法测定实验室内控样品,测定结果与电感耦合等离子体质谱法(ICP-MS)测定结果一致。  相似文献   

3.
应用电感耦合等离子体原子发射光谱法测定金属锂中铝、金、钡、钙、钴、铬、铜、铁、铟、镁、锰、钼、镍、铅、钯、铂、锡、钛、钒、钇和锌21种微量元素。选择了元素的分析线,考察了载气流量、硝酸浓度和基体锂对测定的影响。当试液中锂和钠的浓度分别小于12 mg/mL和22μg/mL,铝、铁、铬、钙、镍、镁、铅等浓度分别小于10μg/mL时,对选择的分析线的干扰不明显。基体效应通过基体匹配和背景校正克服。试液中锂的浓度为10 mg/mL时,元素的测定范围为20~640μg/g。用本法测定-金属锂样品中的21种杂质元素,  相似文献   

4.
用微波消解技术,以混合酸(盐酸-硝酸-硫酸-双氧水)消解磷酸铁锂样品,建立了电感耦合等离子体质谱法(ICP-MS)测定磷酸铁锂中钠、镁、铝、钙、钛、铬、锰、钴、镍、铜、锌、铅等12种微量杂质元素的分析方法。确定了最佳实验条件如下:采用普通模式测定元素铅,氦碰撞模式测定钠、镁、铝、钛、铬、锰、钴、镍、铜、锌,氢气反应模式测定钙;碰撞气He气流速为5.6 mL/min,反应气H2的流速为6.2 mL/min;钠、镁、铝、钙、钛采用钪为内标进行基体校正,铬、锰、钴、镍、铜、锌采用铱进行校正,铅采用铋进行校正。方法检出限在4.5~28.9 ng/L之间。采用实验方法对磷酸铁锂实际样品中各元素进行测定,结果的相对标准偏差(RSD,n=11)在0.6%~1.9%之间,加标回收率为94%~107%。方法测得结果与电感耦合等离子体原子发射光谱法(ICP-AES)进行对比分析,结果基本一致。  相似文献   

5.
基于全自动消解仪优化程序,以混合酸体系(硝酸-氢氟酸-高氯酸)消解样品,通过选择合适的待测同位素以及干扰元素校正方程校正质谱干扰,建立了电热消解-电感耦合等离子质谱法(ICP-MS)测定准东煤中铍、钒、锰、钴、镍、铜、锌、钼、镉、钡、铊、铅、银、铬、锑等15种元素的新方法。确定的最佳实验条件如下:采用标准模式测定铅、镍;采用碰撞模式,以氦气流速为3.0mL/min测定铍、锰、钴、铜、锌、钼、镉、钡、铊、铬、锑,以氦气流速为4.0mL/min测定钒、银;以~(187)Re对~(205)Tl、~(208)Pb进行校正,以~(115)In对~9 Be、~(51)V、~(55)Mn、~(59)Co、~(60)Ni、~(63)Cu、~(66)Zn、~(98)Mo、~(111)Cd、~(138)Ba、~(107)Ag、~(52)Cr、~(121)Sb进行校正可消除基体效应和信号漂移现象的影响。15种元素校准曲线的线性相关系数均大于0.999 9,方法检出限在0.005~0.400μg/g之间。采用实验方法对准东五彩湾煤样中15种元素进行测定,所得结果的相对标准偏差(RSD,n=11)为0.4%~3.3%,加标回收率为94%~115%;除镉、铊、银因含量低超出电感耦合等离子体原子发射光谱法(ICP-AES)的检出限外,其他元素的测得结果均与ICPAES基本一致。  相似文献   

6.
刘婷  李剑  李震乾  卢凡  冯婧  罗策 《冶金分析》2022,42(7):54-61
优级纯硝酸常用作试样分解或作为酸度调节剂广泛应用于试样制备过程中,因此准确可靠地监控优级纯硝酸中相关的杂质元素含量具有重要意义。先采用校准曲线法进行半定量测定,再按各元素含量的0.5倍、1.0倍、2.0倍浓度范围确定了每一元素标准加入的量,建立了普通分辨率的电感耦合等离子体质谱(ICP-MS)标准加入法直接测定优级纯硝酸中银、铝、砷、钡、铋、钙、铬、铯、铜、铁、铟、镁、锰、钠、镍、铅、铷、钯、锡、锶、铊、铀、钒、锌、硼、铪、铌、钽、钛、钨、锆含量的方法。通过质谱干扰分析并结合同位素丰度确定了待测同位素;选用动态反应池技术(DRC)测定钙、铬、铁、锰和钒这5个元素,并对各元素测定条件进行了优化,其余元素则采用标准模式测定;采用干扰校正方程来克服115Sn对115In形成的同质异位素干扰。在优化的条件下,建立各元素标准加入法的校准曲线,并用仪器软件设置为“外标法”模式的工作曲线,后续对其他优级纯硝酸进行检测时可直接在此工作曲线下进行,不需要每个样品都进行标准加入。各元素工作曲线线性相关系数r均不小于0.999,各元素检出限在0.000 3~0.114 ng/mL之间,定量限在0.001 0~0.38 ng/mL之间。将实验方法应用于优级纯硝酸样品中31种痕量杂质元素的测定。结果表明,钙和钠质量浓度超过75 ng/mL,硼、铁、镁、锌4种元素质量浓度介于5.0~11.0 ng/mL,其他元素质量浓度均小于5.0 ng/mL,测定结果的相对标准偏差(RSD,n=7)在0.89%~5.9%之间,回收率在90%~110%之间。方法不仅解决了高分辨率电感耦合等离子体质谱检测成本过高的问题,而且将样品溶解后采用标准加入法进行测定,避免了蒸发富集样品前处理方式效率相对较低、存在样品污染的风险。  相似文献   

7.
刘爱坤 《冶金分析》2015,35(9):42-46
采用王水并滴加氢氟酸溶解含铬镍生铁样品,高氯酸冒烟,采用标准样品/控制样品制作校准曲线,测定过程采用内标法,实现了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定含铬镍生铁中高镍、高铬以及锰、磷、钼、铜和钴等元素的测定。在仪器工作条件下,各元素校准曲线线性相关系数均大于0.999,其中镍元素线性相关系数达到0.999 9。方法中各元素的检出限为0.002 0~0.020 μg/mL。采用实验方法对含铬镍生铁实际样品中的镍、铬、锰、磷、钼、铜和钴含量进行测定,结果与国家标准化学分析方法基本一致,相对标准偏差(RSD,n=11)在0.53%~5.0%之间。  相似文献   

8.
张颖  李林元  张蕾 《冶金分析》2019,39(9):8-13
高纯碳化钨粉作为超细硬质合金生产的原料,其杂质元素含量的分析和控制十分重要。采用电感耦合等离子体质谱法(ICP-MS)测定高纯碳化钨粉时,需先将样品中碳完全氧化除去后再进样测定,否则不溶的游离碳会堵塞仪器进样系统,引起信号波动,严重干扰测定。实验采取将样品于600~800℃马弗炉中氧化的方式除去游离碳,然后再用氨水消解样品,在优化测定同位素和仪器工作参数的基础上,采用屏蔽炬冷焰技术测定钙、铁、铬、镁、铝、锰、钴、镍、铜,采用常规模式测定砷、铋、镉、钼、铅、锑、锡、钛、钒以消除质谱干扰,以钨基体匹配法绘制校准曲线克服基体效应,控制基体质量浓度为0.5mg/mL,实现了ICP-MS对高纯碳化钨粉中这18种元素的测定。在选定的工作条件下,各元素校准曲线的线性相关系数均大于0.9995,方法检出限在0.006~0.330μg/g之间。应用实验方法测定高纯碳化钨粉样品中18种杂质元素,锡测定值的相对标准偏差(RSD,n=11)为24%,除锡外其他元素的RSD(n=11)均小于10%,测定值与直流电弧原子发射光谱法(ARC-AES)结果基本吻合。因高纯碳化钨粉样品在马弗炉中氧化后主要成分为三氧化钨,因此采用实验方法对三氧化钨标准样品中18种杂质元素进行测定以验证方法正确度,结果表明,测定值与认定值基本一致。  相似文献   

9.
芦飞 《冶金分析》2014,34(7):69-73
采用铣床制样,建立了X射线荧光光谱法(XRF)测定不锈钢中硅、锰、磷、硫、铬、镍、铜、钼、钒、钛、铌、钴元素的分析方法。通过对铣床和磨样机处理样品表面的分析,确定了铣床制备样品表面的最佳参数。对X射线荧光分析仪基本分析条件优化后,绘制了不锈钢样品中碳、硅、锰、磷、硫、铬、镍、铜、铝、钼、钒、钛、铌、钴、钨、钙、砷、锡、铅、锑和铁21个元素的回归曲线,对其中磷、硫、铬、镍、铜和钴元素进行干扰校正后,得到了较为理想的结果。比较了实验方法与火花源原子发射光谱法分析不锈钢中铬和镍元素的精密度,结果表明,实验方法的分析精密度较好。对精密度进行了验证,硅、锰、磷、硫、铬、镍、铜、钼、钒、钴元素的相对标准偏差(n=11)在0.08%~3.8%之间;对不锈钢标准样品进行分析,实验方法的分析结果与湿法或火花源原子发射光谱的测定值吻合较好。  相似文献   

10.
汪磊  蒙益林  高帅  颜京  李燕昌 《冶金分析》2021,41(10):69-75
海绵铪对杂质元素的种类及含量要求严格,现有检测方法难以快速、准确地测定海绵铪中钨、镍、锰、钛、钒、钼,钴、铜等8种杂质元素。实验采用硝酸、氢氟酸溶解样品,采用基体匹配法绘制校准曲线并消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定海绵铪中钨、镍、锰、钛、钒、钼、钴、铜,方法可以测定海绵铪中0.001%~0.010%(质量分数,下同)钨、镍、锰、钛、钒、钼、钴、铜。各元素质量浓度在0.10~3.00 μg/mL范围内与其发射光谱强度呈良好的线性关系,线性相关系数大于0.999;各元素检出限不大于0.000 5%,定量限不大于0.001 5%。按照实验方法测定海绵铪中8种杂质元素,结果的相对标准偏差(RSD,n=8)为4.3%~9.8%,测定结果与电感耦合等离子体质谱法(ICP-MS)一致。  相似文献   

11.
李刚  陈苏  李艳  张娟萍  马晓龙 《冶金分析》2012,32(11):56-60
使用电感耦合等离子体原子发射光谱法对核级锆合金中4种常量元素及13种痕量元素进行测定。通过用高纯海绵锆及主合金元素进行基体匹配和选择合适的光谱线作被测元素分析线,成功地测定了核级锆合金中常量元素锡、铌、铁、铬和痕量元素铝、钴、铜、钼、镁、锰、镍、铅、硅、钽、钛、钒、钨。对NIST的360b锆合金中锡、铁、铬、镍的测定,其测定结果与标准物质证书给出的标准值相一致。对核级锆合金进行加标回收试验,结果表明,除钽的回收率偏低和铝、铅的回收率偏高外,铌、钴、铜、钼、镁、锰、硅、钛、钒、钨的回收率在92%~108%之间。本法的测定结果稳定,3天测定结果的相对标准偏差(RSD)均在6%以下,能满足西屋认证标准(RSD<10%)的要求。  相似文献   

12.
精炼镍是冶炼不锈钢的优质原材料,产品有通用镍、镍豆等,需要检验其中的杂质元素。采用硝酸(1+1)溶解样品,选择Si 251.612nm、Mn 257.610nm、P 178.217nm、Fe259.940nm、Cu 324.754nm、Co 238.892nm、Mg 279.553nm、Al 396.153nm、Zn 206.191nm、Cr 267.716nm为分析线,离峰扣背景校正法消除背景干扰,无镍基体匹配的方法绘制校准曲线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定了精炼镍中硅、锰、磷、铁、铜、钴、镁、铝、锌、铬等10种元素。方法中各元素校准曲线的线性相关系数均大于0.999 5;各待测元素的检出限为0.000 12%~0.001 9%。按照实验方法测定精炼镍样品和Nickel200标准样品中硅、锰、磷、铁、铜、钴、镁、铝、锌、铬,样品测定结果的相对标准偏差(RSD,n=11)在1.0%~10%之间,而标样的测定值和认定值相符。对精炼镍试样的加标回收率在90%~105%之间。  相似文献   

13.
高亮 《冶金分析》2013,33(2):51-54
建立了红土镍矿中Si、Ca、Mg、Al、Mn、Ti、 Cr、Ni、Co 9种元素的电感耦合等离子体原子发射光谱测定方法。红土镍矿样品用无水Na2CO3-H3BO3混合熔剂熔融,盐酸浸取、酸化, 选用高盐雾化器和旋流雾室,在选定的测量条件下,用电感耦合等离子体原子发射光谱法测定试液中9种元素含量。基体铁和处理样品时引入试液中的盐分对测定的影响可以通过基体匹配的方法消除。精密度试验结果表明,样品中各元素测定结果的相对标准偏差小于5%。用本法测定标准样品,9种元素的测定值与认定值基本一致。  相似文献   

14.
选择水-盐酸-氢氟酸-硝酸混合酸体系溶解样品,控制雾化气流速为0.65 L/min,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定TG6钛合金中镁、钒、铬、铁、钴、铜、锰、钼和钨的方法。考察了钛基体和共存元素对待测元素的影响,确定各待测元素分析线为Mg 285.2 nm、V 310.2 nm、Cr 283.5 nm、Fe 259.9 nm、Co 238.8 nm、Cu 213.5 nm、Mn 257.6 nm、Mo 202.0 nm、W 207.9 nm。采用基体匹配法消除了基体影响。方法检出限为0.000 3~0.005 7 μg/mL。采用方法对实际样品分析,结果的相对标准偏差为0.26%~13.6%,加标回收率为93%~110%。按照TG6钛合金的名义成分Ti-5.8Al-4Sn-4Zr-0.5Ta-0.7Nb-0.4Si-0.06C配制模拟TG6钛合金样品,实验方法测得结果与理论值基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号