共查询到17条相似文献,搜索用时 156 毫秒
1.
采用盐酸、硝酸、氢氟酸和高氯酸加盖溶解样品,选择分析线和内标线分别为Cd226.502nm和Y 371.029nm,使用电感耦合等离子体原子发射光谱(ICP-AES)-内标法测定镉,从而建立了铜精矿中镉的测定方法。通过改变四酸的加入量以及加盖状况进行试验,结果表明,对于常见样品,采用10.0mL盐酸、10.0mL硝酸、3.0mL氢氟酸溶解和3.0mL高氯酸加盖溶解并赶氟冒烟,再补加2.0mL高氯酸至白烟冒尽可以使样品溶解完全,对于个别样品,需重复加高氯酸冒烟,直至样品完全溶解。比较了用内标法和基体匹配法在消除基体干扰和仪器及环境波动方面的效果,在相同条件下,内标法测定镉的精密度与基体匹配法基本一致,相对标准偏差(RSD,n=11)为0.9%~1.1%;另外,进行了铜精矿中共存元素的干扰试验,发现随着铜和铁基体加入量的增加,镉的测定值呈逐渐下降的趋势,而通过内标法测定可以消除这种影响。镉的质量浓度在0.025~10.0μg/mL之间与其对应的发射强度呈线性,线性相关系数r=0.999 8。方法检出限为0.000 2%(质量分数),方法中镉的测定范围在0.001 1%~2.0%(质量分数)之间。按照实验方法测定VS2891-84铜精矿标准物质中铜,结果与认定值相符,其相对误差(RE)为0.34%。 相似文献
2.
提出了一种快速测定镍铜合金中的锰和铁的电感耦合等离子体原子发射光谱法(ICP-AES)。样品用硝酸溶解, 选择257.610 nm 和259.940 nm波长的谱线分别作为锰和铁的分析线, 运用基体匹配的校准曲线, 在优化仪器工作参数条件下测定, 基体和共存元素对测定没有干扰, 方法的检出限分别为0.001%(锰)和0.000 6%(铁)。方法用于镍铜合金标准样品中锰和铁的测定, 测定值与认定值一致, 相对标准偏差为1.0%(锰)和0.88%(铁)。 相似文献
3.
铜阳极泥物料成分复杂,钡含量变化较大,现无相关检测标准。实验提出了碱性熔剂熔融-电感耦合等离子体原子发射光谱法(ICP-AES)测定铜阳极泥中钡含量的分析方法。确定的方法如下:准确称取0.2g试样,与4g碳酸钠-碳酸钾熔剂混合完全,加入0.5mL消电离剂(15g/L氯化铯溶液),在(700±20)℃熔融30min,冷却,浸取,过滤,弃去滤液,将沉淀物溶解,定容。采用Ba 233.527nm作为分析线,建立了电感耦合等离子体原子发射光谱法测定铜阳极泥中钡的方法。通过元素干扰试验,检测10mg钡量,控制相对误差不大于±1%时,下列量(mg)的离子不干扰测定:Pb(Ⅱ)(400),Cu(Ⅱ)(350),Sb(Ⅴ)(50),Bi(Ⅲ)、Te(Ⅵ)(30),Ni(Ⅱ)(10)。Ba的质量浓度在0.50~25μg/mL范围内与发射强度呈良好的线性关系,相关系数为0.999 99;方法检出限为6.0μg/g。将方法用于铜阳极泥实际样品中钡的测定,结果的相对标准偏差(RSD,n=5)小于0.5%,回收率为94%~102%。 相似文献
4.
5.
氧化钼掺杂稀土元素改性是近年来的研究热点,目前尚没有针对氧化钼中稀土元素分析的国家标准方法。实验采用硝酸-过氧化氢溶解样品,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定氧化钼样品中镧和钇。实验研究了样品溶液中钼基体和试液介质酸度的影响,结果表明:高浓度的钼对镧和钇的测定产生基体效应,而氧化钼质量浓度小于2 mg/mL时对镧和钇的测定几乎没有影响;介质中硝酸酸度不影响样品中镧、钇的测定。按照实验方法测定含镧量不同的4个样品中镧,测定结果的相对标准偏差(RSD,n=7)为0.95%~3.2%,回收率为97%~98%;按照实验方法测定含钇量不同的4个样品中钇,测定结果的相对标准偏差(RSD,n=7)为4.3%~5.5%,回收率为101%~103%;镧和钇的测定值与参考值相吻合。 相似文献
6.
针对电感耦合等离子体原子发射光谱法应用于铜阳极泥中8种元素的快速测定进行了研究.实验结果以及长期生产实践验证表明,该方法具有良好的回收率97.3%-106.0%,相对标准偏差为0.37%-2.74%,完全满足分析测试要求.该方法的成熟应用,高效率指导了企业下属稀贵金属分公司的生产经营. 相似文献
7.
使用盐酸和硝酸溶解样品,采用基体匹配法绘制校准曲线消除基体效应的影响,选择灵敏度高且不受共存元素影响的谱线Be 313.107 nm作为分析线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定铝合金中铍质量分数为0.000 05%~0.000 5%的分析方法。方法中铍的检出限为0.000 001 6%(质量分数)。铍质量浓度在0.002~0.020 μg/mL范围内,校准曲线的线性回归方程为I =8.894×106ρ+1.747×105,相关系数r=0.999 6。按照实验方法测定铝合金标准样品中铍,测定值与认定值一致,相对标准偏差(RSD, n=8)小于10%。 相似文献
8.
试验采用盐酸溶解样品,选择Nb 316.340 nm为分析谱线,采用基体匹配法绘制校准曲线消除基体效应的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定锰桃中铌含量的方法。铌的质量浓度在0~1.00μg/mL范围内线性关系良好,相关系数r为0.999 91,方法检出限为0.015 6μg/g。按照试验方法应用于锰桃中铌的测定,结果的相对标准偏差(RSD,n=11)不大于3.52%,回收率为98.0%~103.5%,且与分光光度法的测定值基本一致。 相似文献
9.
在钢中添加适量的La、Ce、Y可以改善其性能,因此准确测定钢中La、Ce、Y具有重要意义。通过扫描电子显微镜分析表明,La、Ce、Y是以夹杂物的形式存在于钢中,且分布不均匀。首先使用王水溶解样品,选择La 408.672 nm、Ce 456.236 nm、Y 371.028 nm为分析线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定低合金钢中La、Ce、Y的方法。结果表明,La、Ce、Y的质量浓度在0.10~10.00μg/mL范围内与其发射强度呈线性关系,线性相关系数均大于0.999 9。方法中La、Ce、Y的检出限分别为0.000 23%(质量分数,下同)、0.000 15%、0.000 18%,定量限分别为0.000 76%、0.000 51%、0.000 61%。按照实验方法测定低合金钢样品中La、Ce、Y,结果的相对标准偏差(RSD,n=7)均小于5%,回收率为95%~110%。 相似文献
10.
铜磁铁矿作为冶炼铜和铁的重要原料,有害元素硫含量较高。试样经逆王水消解、氢氟酸挥硅和高氯酸进一步氧化后,在硝酸体系中,选择S 182.034nm为分析谱线,使用铁基体匹配的标准溶液系列绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定高硫铜磁铁矿中硫。硫质量浓度为0.10~150μg/mL时与其发射光谱强度呈良好的线性关系,线性相关系数为0.9998;方法检出限为0.0135%。实验方法用于测定5个含量水平高硫铜磁铁矿样品中硫,测定结果的相对标准偏差(RSD,n=11)为2.1%~3.7%,与高频燃烧红外吸收法的测定结果没有显著性差异。方法的重复性标准差为Sr=0.0135x+0.0143,重复性限为r=0.0379x+0.0396,再现性标准差为SR=0.0232x+0.0137,再现性限为R=0.0653x+0.0383。 相似文献
11.
优质石英砂主要成分为SiO2,其中的杂质直接影响其品质。通常杂质的测定方法如分光光度法和原子吸收光谱法,存在流程长、不能多组分同时测定等问题,难以满足实际检测需求。实验采用氢氟酸、硝酸、高氯酸分解样品,加入In标准溶液作内标,简化实验流程,消除基体效应、仪器漂移及定容体积不准确造成的测定误差,建立了电感耦合等离子体原子发射光谱(ICP-AES)-内标法测定优质石英砂中Al2O3、Fe2O3、TiO2、CaO、MgO、K2O、Na2O、P2O5等8种杂质组分的方法。在各组分校准曲线线性范围内,线性相关系数在0.999 4~1.000 0之间;方法中各组分的检出限为0.000 1%~0.003 8%(质量分数)。按照实验方法测定石英岩标准物质GBW07837中的各待测组分,结果的相对标准偏差(RSD,n=12)为0.92%~6.6%,测定值和认定值相吻合。采用实验方法对优质... 相似文献
12.
探究了钛铌合金的溶解及使用电感耦合等离子体原子发射光谱(ICP-AES)测定该合金中高含量铌的方法。实验采用硫酸和氢氟酸溶解钛铌合金,在优化的操作条件下,采用基体匹配法和内标法相结合的方法消除干扰。选择波长Nb 269.7 nm谱线为分析线,钒作为内标元素、268.7 nm波长的谱线作为内标线。方法的线性范围为0.5%~95%,线性相关系数r=0.999 7。用于Ti-45Nb合金中铌的测定,相对标准偏差(n=6)为0.46%,加标回收率在99%~102%之间。方法快速、准确, 可用于钛铌合金中高含量铌的测定。 相似文献
13.
以盐酸、氢氟酸、高氯酸和硝酸混合酸溶解,选择Zr 257.139nm为分析线,高纯铁基体匹配法绘制校准曲线消除基体效应的影响,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定锆,从而建立了硅锆合金中高含量锆的测定方法。锆的质量分数为3.04%~30.42%时与其发射强度呈线性,校准曲线的线性相关系数为0.999 8;方法检出限为0.007%(质量分数)、测定下限为0.033%。按照实验方法测定钛合金样品和钛合金标准样品中锆,结果的相对标准偏差(RSD,n=6)不大于1.2%。实验方法用于测定3个硅锆合金样品中锆,结果与苦杏仁酸重量法测定结果一致。 相似文献
14.
15.
以盐酸和过氧化氢溶解样品,电感耦合等离子体原子发射光谱法(ICP-AES)测定了铝钨合金中钨。着重研究样品的溶解条件,确定了先加入盐酸至铝基质颗粒反应完全后再加入10 mL过氧化氢的试剂加入顺序。过氧化氢用量随着样品中钨含量的不同而不同,但对于溶解钨含量为0.10%~15%铝钨合金样品,过氧化氢加入量在100 mL以下对测定结果无影响。钨的质量浓度在500 mg/L内校准曲线的线性关系良好,相关系数为0.999 5。基体铝对测定的影响采用基体匹配方法消除。方法应用钨质量分数不同的铝钨中间合金分析,钨的测定值与辛可宁重量法测定值一致,回收率在98%~102%之间,相对标准偏差(RSD,n=9)为2.8%~5.1%。方法能满足科研与生产的快速检测需要。 相似文献
16.
铜磁铁矿作为冶炼铜和铁的重要原料,有害元素硫含量较高。试样经逆王水消解、氢氟酸挥硅和高氯酸进一步氧化后,在硝酸体系中,选择S 182.034nm为分析谱线,使用铁基体匹配的标准溶液系列绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定高硫铜磁铁矿中硫。硫质量浓度为0.10~150μg/mL时与其发射光谱强度呈良好的线性关系,线性相关系数为0.9998;方法检出限为0.0135%。实验方法用于测定5个含量水平高硫铜磁铁矿样品中硫,测定结果的相对标准偏差(RSD,n=11)为2.1%~3.7%,与高频燃烧红外吸收法的测定结果没有显著性差异。方法的重复性标准差为Sr=0.0135x+0.0143,重复性限为r=0.0379x+0.0396,再现性标准差为SR=0.0232x+0.0137,再现性限为R=0.0653x+0.0383。 相似文献
17.
提出了铝合金试样经酸溶解后用电感耦合等离子体原子发射光谱法(ICP-AES)测定其中银的分析方法。对溶样酸的选择、基体和共存元素干扰等条件进行探讨。结果表明,铝合金试料用硝酸(1+1)和氢氟酸溶解、定容后用ICP-AES测定时,通过选择328.028 nm波长谱线作为银分析谱线,可避免基体及共存元素的干扰。方法的检出限为0.004 4 μg/mL, 5个平行样测定结果的相对标准偏差均小于3.2%。测定了不同含量银的铝合金控制样品,结果与原子吸收光谱法的分析结果相一致。方法可用于铝合金中银含量范围在0.002 4%~0.273%的试料测定,适用于现场生产质量控制。 相似文献