共查询到3条相似文献,搜索用时 46 毫秒
1.
2.
采用原位统计分布分析技术对重轨钢铸坯中MnS夹杂的粒度分布情况进行了分析研究。通过ASPEX扫描电镜-能谱仪(SEM-EDS)将重轨钢中不同尺寸的MnS夹杂进行统计,建立了原位统计分布分析MnS夹杂的粒度分布曲线,分别对重轨钢铸坯中5~10、10~20、20~50μm的MnS夹杂的分布情况进行了统计分析。结果表明,沿着铸坯的内部到边缘的方向上,5~10μm小颗粒夹杂一直存在,10~20、20~50μm大颗粒MnS夹杂所占比例降低,直到铸坯边缘,几乎没有大颗粒MnS夹杂存在。将该结果与ASPEX扫描电镜-能谱仪得到的结果相比较,两者在反应夹杂物分布趋势上具有一致性,说明原位统计分布分析技术分析铸坯中夹杂物的粒度分布方法的建立具有可靠性。 相似文献
3.
采用无水有机溶液电解法分离提取重轨钢中的MnS夹杂物,采用扫描电镜观察铸坯内和钢轨中MnS夹杂物的三维形貌,并结合能谱仪分析其成分。铸坯被轧制成钢轨后,相应的MnS夹杂物都沿着轧制方向被轧制成长条状。基于热力学和动力学模型,分析重轨钢中MnS夹杂物析出行为以及在钢液凝固过程中锰元素和硫元素偏析的程度。热力学分析表明,MnS夹杂物在凝固末期凝固分数为0.94时开始析出,其析出量由初始[w([Mn])]和初始[w([S])]决定,且在凝固过程受到冷却速率的影响,对比发现,热力学的计算析出结果与Thermo-Calc和FactSage6.4的计算结果有较好的一致性;动力学分析表明,在钢液凝固过程增加冷却速率,凝固析出的MnS颗粒尺寸将减小。通过调整钢中[w([Mn])]和[w([S])]以及改变冷却速率,可以控制MnS的析出时机和形态,减小其对钢性能的有害影响。 相似文献