首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用连续沥青基炭纤维与商业PAN基炭纤维的混编制备了三维炭/炭复合材料预制体,通过多次化学气相渗透(CVI)、液压浸渍(LPI)工艺对其进行增密处理和一系列的炭化和石墨化处理获得高导热三维炭/炭复合材料。在此典型结构中,沥青基炭纤维沿x,y方向水平正交排布,而商业PAN基炭纤维沿z方向双向贯通排布。研究了炭/炭复合材料的显微结构以及炭纤维和热解炭对炭/炭复合材料热导率和力学性能的相对贡献。CVI热解炭具有高结晶度并且沿纤维轴高度择优取向。通过3CVI和3CVI+4LPI工艺制备的炭/炭复合材料的密度分别达到了1.58和1.84 g/cm3。所制备的炭/炭复合材料沿x,y方向分别具有115.9 W/m·K (3CVI)和234.7 W/m·K (3CVI+4LPI)的高热导率,沿z方向的热导率分别只有18.6(3CVI)和41.5 W/m·K (3CVI+4LPI)。热扩散和热导率主要依赖于炭/炭复合材料中的连续性沥青基炭纤维。通过PAN基炭纤维的引入和后续增密过程,三维炭/炭复合材料的力学性能相对于一维炭/炭复合材料和二维炭/炭复合材料显著提高。  相似文献   

2.
花状纳米铜的制备及抗菌性能   总被引:2,自引:0,他引:2  
采用液相化学还原法分别制备了聚乙烯吡咯烷酮(PVP)和羧甲基壳聚糖(NOCC)修饰的花状铜纳米材料。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线粉末衍射仪(XRD)等对所得样品的形貌和结构进行了表征。结果表明,所制备样品具有面心立方铜的晶体结构,SEM观察下,铜纳米微粒以PVP和NOCC为软模板自组装生长花状纳米结构。分别通过抑菌圈法和肉汤稀释法测试了样品对3种常见菌种的抑菌圈直径、最小抑菌浓度(MIC)和最小杀菌浓度(MBC)。结果表明,所制备样品对大肠杆菌(E.coli)、金黄色葡萄球菌(S.aureus)及绿脓杆菌(P.aeruginosa)均具有优异的抑菌杀菌作用。  相似文献   

3.
采用在炭纤维束的内部浸润熔融沥青的传统方法制备得到的炭/炭(C/C)复合材料难以实现细旦化水平,这是因为单束丝中含有数千根丝,经浸渍后沥青附着,从而引起沥青局部渗出,以及因不均匀沥青稳定性而导致微观结构不均匀。本文通过稳定的中间相沥青和分散的短切炭纤维混合、热压和炭化过程制备出细旦化水平的C/C复合材料。探讨了工艺参数对中间相沥青残炭率的影响。通过残炭率/工艺时间、残炭率!(表观密度/实密度)来优化工艺参数。结果表明,通过此法得到了细旦化水平的中间相沥青与炭纤维复合材料。中间相沥青的残炭率随加热升温速率、沥青/炭纤维质量比的增加而降低;随热压压力而增加。在高压力和高质量比下,发生沥青局部渗出。通过调控得到最佳的C/C复合材料制备工艺参数为:热压压力15 MPa,升温速率0. 2℃/min及沥青/炭纤维质量比1∶1。  相似文献   

4.
通过电化学沉积法制备得到聚苯胺/炭微球(PANI/CMS)复合电极材料,通过场发射扫描电子显微镜和红外光谱对PANI/CMS复合材料进行形貌和结构表征。并采用循环伏安、恒电流充放电、电化学阻抗谱及循环寿命测试等技术考察其电化学行为。结果表明:PANI均匀包覆于CMSs表面;在电流密度为1 A·g~(-1)时,复合材料的比电容达到206 F·g~(-1);PANI/CM S复合材料表现出优异的电化学稳定性。说明PANI/CMS复合材料有望作为电极材料用于超级电容器。  相似文献   

5.
通过在纳米碳管纸上沉积热解炭层的方法来提升其结构稳定性并保持其优异的性能。这种纳米碳管@热解炭复合纸可以被切割成任意形状而无开口式破裂。在500次往复弯曲后,其内部结构仍保持完整。弯折前后,复合纸的拉伸强度从8.58 MPa提升至11.41 MPa,这是因为内部纳米碳管取向更加趋于一致。复合纸的热扩散率和散热量几乎保持不变,并接近同尺度的铜箔,这归功于纳米碳管增强的热解炭层及内部纳米碳管网络在变形过程中没有损伤。故这种复合纸有望作为一种轻质柔性的散热材料。  相似文献   

6.
聚苯胺/氧化铜纳米复合材料的制备及抗菌性能   总被引:1,自引:0,他引:1  
通过水热法制得长2μm,直径100 nm~200 nm的氧化铜纳米棒,然后以此纳米棒采用原位聚合法得到了聚苯胺/氧化铜纳米复合材料。并用傅立叶红外光谱(FT-IR)、扫描电镜(SEM)、热重分析(TG)等测试方法对所得复合材料进行了表征。结果表明,聚苯胺对纳米氧化铜表面包覆,得到了棒状核壳结构的复合材料,当氧化铜添加质...  相似文献   

7.
以二氧化钛纳米颗粒和硫酸铜溶液为原料,在紫外线灯的照射下进行铜负载二氧化钛纳米带复合材料制备,采用扫描电子显微镜(SEM)、X-射线能谱仪(EDS)、X-射线衍射仪(XRD)、抑菌圈法、细菌比浊法等分析技术研究了所制备负载纳米带复合材料的微观结构及抗菌性能。结果表明,纳米二氧化钛粒子在水热条件下可生长成纳米带,铜均匀负载在纳米带上,从而制备出铜负载二氧化钛纳米带复合材料,负载程度可以通过更改照射时间、硫酸铜浓度等条件进行微调;该负载纳米带复合材料对革兰氏菌有很好的抗菌性能,且负载程度越高,产物抗菌性能越大。  相似文献   

8.
以废米糠为原料,浓硫酸为脱水剂,通过炭化法制备出炭纳米颗粒(CNPs),探讨CNPs荧光发射特征、金属离子的淬灭效应以及作为Sn(II)离子传感材料应用。CNPs产率最佳条件为:硫酸浓度12 mol/L、加热温度120℃及恒温时间30 min。样品在水中强蓝光的最大发射波为439 nm。通过加入金属离子,使金属离子与CNPs表面间形成复合物而淬灭荧光。Sn(II)离子对CNPs荧光具有显著的淬灭效应。Sn(II)离子浓度对淬灭效应符合Stern-Volmer线性关系,Sn(II)离子为6.13 mmol/L。Sn(II)离子的检测限为18.7μmol/L。  相似文献   

9.
The challenge of fabricating nanostructured W–Cu composites by powder metallurgy has been solved by means of modulated phase separation. A hierarchically nanostructured(HN) W–Cu composite was prepared using intermediary Al through sluggish asynchronous phase separation. In addition to a dual network composed of a Cu phase and the W–Cu nanostructure, dense Al-containing nanoprecipitates with a body-centered cubic(bcc) structure are distributed in the W matrix. Compared with a pristine W/Cu interf...  相似文献   

10.
以甲烷为碳源,通过化学气相沉积和化学蒸汽渗透两步法将热解炭填充至碳纳米管阵列间的空隙而制备出碳纳米管阵列/热解炭复合材料。采用扫描电镜和拉曼光谱仪对样品的结构进行表征。结果表明,碳纳米管被热解炭填充和覆盖形成均相的复合膜,其密度增加4倍,同时热解炭已石墨化。  相似文献   

11.
载铜纳米羟基磷灰石的制备及抗菌性能评价   总被引:8,自引:1,他引:7  
常压条件下,用液相沉淀法合成了纳米羟基磷灰石(n-HA)浆料,并在超声波作用下,在水介质中用浸渍交换法中制备了载铜纳米羟基磷灰石(Cu-HA)抗菌材料.运用原子吸收光谱(AAS)、转靶X射线衍射(XRD)、透射电镜(TEM)等手段对材料的理化性能进行了表征.并通过抑菌环、抑菌率、最小抑菌浓度和最小杀菌浓度实验对该抗菌材料的抗菌性能进行了研究,结果表明,载铜n-HA抗菌材料对革兰氏阴性菌E.coli和革兰氏阳性菌S.aureus均有较强的抑制和杀灭作用.  相似文献   

12.
将纳米Si粉以一定配比分散在石油重油中,在高压反应釜中经过460℃自升压热解反应,再经900℃炭化制备一种锂离子二次电池负极用纳米硅/炭(Si/C)复合材料。考察了纳米Si粉添加量对产物收率、微观结构及电化学性能的影响。结果表明:纳米Si粉的加入有助于提高固体产物的收率;在纳米Si/C复合材料中纳米Si粉均匀地镶嵌于炭基体中;纳米Si粉的晶型在热解反应前后没有发生变化。当纳米Si粉与石油重油质量比为5∶100时制备的纳米Si/C复合电极材料具有498mAh/g的首次可逆比容量和90%的充放电效率。  相似文献   

13.
以氯化铜为铜源,水合肼为还原剂,十六烷基三甲基溴化铵(CTAB)为稳定剂,氨水为络合剂,通过液相还原法合成了纳米铜粉。通过改变还原剂浓度制备了4组不同粒径纳米铜粉末,FESEM等表征发现,随着水合肼浓度的降低,纳米铜粉粒径增加。通过肉汤稀释振荡培养法测试纳米铜的最小抑菌浓度,结果表明,随着纳米铜粒径的增加,抗菌性能降低,所合成纳米铜的最小抑菌浓度在750~3000mg/L;初步分析认为铜纳米粒子主要是通过水解或电离出铜离子而发挥抗菌作用。  相似文献   

14.
目的研究石墨烯/银纳米粒子(AgNP/G)复合抗菌材料简单快捷的制备方法。方法在碱性环境下采用原位还原法制备AgNP/G纳米复合材料。利用X射线衍射、红外、紫外和透射电镜等技术对AgNP/G复合材料的结构及形貌进行表征,探讨其形成机理,并通过平板计数法来观察AgNP/G复合材料的抗菌性能。结果所制备的AgNP/G复合材料中,形成的纳米银尺寸较小(15 nm)、粒径均一,在石墨烯片层上分布均匀。当AgNP/G的抗菌质量浓度为20μg/m L时,抗菌率达到98.7%。结论碱的存在能加速银纳米粒子在石墨烯片层上的形成,得到的AgNP/G复合材料抗菌性能优异。  相似文献   

15.
为提高炭/炭(C/C)复合材料的抗高温燃气冲刷性能,分别采用包埋法、化学气相沉积法和料浆法在其表面制备了三层涂层。借助扫描电镜、电子能谱等测试手段对涂层试样的微观结构进行了分析,同时研究了涂层C/C复合材料在高温风洞环境中的抗冲刷性能,并分析了涂层在燃气冲刷环境下的失效原因。结果表明:三层涂层由MoSi2-SiC-Si多相内涂层、SiC中间层和玻璃外涂层构成,其厚度分别为80μm,20μm和80μm。该复合涂层可在1500℃风洞环境下对C/C复合材料有效保护53h。涂层在高温风洞中防氧化失效是由于涂层在热冲击以及承受气流冲击的恶劣环境下开裂引起的。  相似文献   

16.
银负载细菌纤维素纳米复合材料的制备及抗菌性能研究   总被引:1,自引:0,他引:1  
陈文彬  张秀菊  林志丹 《材料导报》2011,25(14):6-10,19
利用细菌纤维素超精细网络结构和高持水率的特点,在细菌纤维素上通过硼氢化钠(NaBH4)还原硝酸银中的Ag+原位生成纳米银颗粒,并对其微观结构等进行表征,同时对银负载细菌纤维素纳米复合膜的抗菌性能和生物相容性进行研究。XRD结果表明纳米银颗粒具有较完善的结晶结构,且银晶体为面心立方结构;XRF检测表明复合材料中含有Ag元素;由UV-Vis可知Ag/BC纳米复合材料在424nm处出现了Ag的吸收峰;从SEM图可看出随着硝酸银浓度的增大,细菌纤维素微纤表面负载的银颗粒增多,粒径大约为50~80nm。抗菌实验结果说明Ag/BC纳米复合材料具有很强的抗菌性能,对大肠杆菌和金黄色葡萄球菌的最大抑菌率分别达到99.4%和98.4%。细胞相容性实验表明,Ag/BC纳米复合材料还具有良好的细胞相容性。因此将其用于抗菌伤口敷料会有广阔的应用前景。  相似文献   

17.
通过化学气相沉积(CVI)和化学气相沉积与先驱体转化结合(CVI+PIP)的方法,制备了三种不同炭基组织结构的炭/炭复合材料。三种基体分别是光滑层基体(SLC)、粗糙层基体(RLC)和混合双基体(DMC)(过度生长锥基体+呋喃树脂炭基体)。对这三种复合材料样品进行微观组织结构和动态力学性能表征。结果表明,内耗主要来源于炭基体缺陷的运动、纤维/基体界面的滑移和炭平面的滑移。复合材料的内耗对于温度和振幅变化非常敏感,但频率的变化对复合材料的的内耗影响不大。混合双基体具有最高的缺陷密度和最高的内耗,粗糙层基体具备较完美的炭平面和最低的内耗。炭基体的微观组织结构是影响内耗的关键因素,由于光滑层基体、粗糙层基体和混合双基体的微观结构的区别,导致在不同基体中出现了不同的内耗行为。在室温状态下,基体中缺陷和纤维/基体的界面的运动可能是影响内耗的主要因素,随着温度的升高,内耗的贡献可能主要来源于炭平面的滑移,而且我们还发现动态模量与缺陷密度存在一定关联。  相似文献   

18.
介绍了一种大规模制备形貌可控的中空纳米炭材料的方法。该方法以金属氧化物为模板,利用乙苯分子在金属氧化物表面高温快速产生的积炭为炭源,除去模板后可以得到具有中空结构的纳米炭材料。该方法简单、高效、低成本,具有普适性,制备过程中不需要使用昂贵的表面活性剂为炭源。利用该方法,以实验室制备的氧化锌纳米棒和商业的氧化锌纳米球为模板,分别成功的制备出中空纳米炭管和中空的纳米炭球。该合成方法可以进一步推广到制备其它形貌的中空纳米炭材料并用于催化和能量储存等领域。  相似文献   

19.
纳米多孔炭材料具有高的比表面积、良好的热稳定性和化学稳定性等优点,广泛应用于气体吸附、催化和电化学等领域。尽管目前已做了大量的工作,但是以自模板策略制备纳米多孔炭材料仍存在挑战。结构多样可裁的金属有机骨架(MOF)材料具有规则可调的孔径、高的孔隙率和比表面积等优点,已被证明是制备功能化纳米多孔炭材料的理想前驱体。本文综述了近年来MOF自模板炭化制备纳米多孔炭材料的研究进展,重点介绍以炭化不同的MOF-客体类型为途径获得的多孔炭材料。这将有助于进一步定向开发功能化的新型炭材料,以优化其在更广泛应用领域的性能。  相似文献   

20.
本文制备了高密度三维针刺炭/炭复合材料,研究了该材料在室温和高温下的弯曲性能,并从宏、细观角度研究了材料的变形与失效机理。结果表明,三维针刺炭/炭复合材料具有好的抗弯曲性能,400℃以下的载荷-挠度曲线呈线弹性和脆性破坏特征;而更高温度下的曲线表现出明显的韧性和塑性失效。由于氧化作用的加重,材料的弯曲性能随着温度的升高而显著减小。材料呈现锯齿状断裂特征,在500℃以下,主要的损伤形式表现为基体开裂,90°纤维/基体脱粘,0°纤维的局部扭曲和断裂;而在更高温度下,复合材料的氧化特征更加明显,纤维和基体间的界面粘结性能显著下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号