共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
类金刚石(DLC)和Si–N薄膜都是具有两性分子特性的超硬薄膜,从薄膜的机械强度、摩擦系数、表面能态等方面分析了两类薄膜作为生物机械膜层的性能。Si–N薄膜在与胎牛血清模拟体液环境接触时,表面张力相对于DLC薄膜小,表现出极强的亲水性。Co合金被覆DLC和Si–N薄膜能使显微硬度分别提高7倍及3倍。DLC薄膜的被覆显著提高了钴合金的显微硬度,但在胎牛血清(FBS)中与超高分子量聚乙烯(UHMWPE)的摩擦磨损实验中,摩擦系数变化不大;钴合金被覆Si–N薄膜后在FBS中对磨UHMWPE摩擦系数低至0.02,Si–N薄膜有望成为新型的生物机械保护膜层。 相似文献
3.
采用射频感应耦合离子源(ICP)在硅基底上沉积了DLC薄膜,通过原子力显微镜(AFM)和拉曼光谱对DLC薄膜的表面形貌及结构进行了分析表征,用UTM-2摩擦磨损试验仪对薄膜的摩擦学性能进行了测试。结果表明,利用该方法沉积制备的DLC薄膜具有良好的减摩抗磨性能。 相似文献
4.
5.
6.
采用射频磁控反应溅射法分别在Si和蓝宝石衬底上沉积SiO2薄膜.通过改变沉积薄膜的工艺参数,考察反应气体流量比、沉积温度、射频功率等因素对SiO2薄膜内应力的影响.采用压痕裂纹法分析了镀膜前后蓝宝石的表面应力.结果表明:制备SiO2薄膜时,工艺参数影响SiO2薄膜的成分,当O2/Ar流量比值为1.25,衬底温度为300℃,射频功率为100 W时,可以制备出化学计量比的SiO2薄膜,此时薄膜中的内应力较小;制备的SiO2薄膜呈压应力状态,镀SiO2薄膜可以改变蓝宝石的表面应力,蓝宝石的表面应力已由原来的拉应力变为压应力. 相似文献
7.
8.
9.
10.
11.
12.
Parand R. Riley Kai-Hung Yang Yizhong Liu Shelby A. Skoog Jagdish Narayan Roger J. Narayan 《International Journal of Applied Ceramic Technology》2023,20(2):879-883
The surface chemistry of silicon-incorporated diamond-like carbon (Si-DLC) was tailored utilizing oxygen and fluorine plasma treatments. Successful anchoring of oxygen and fluorine functional groups to the surface of Si-DLC was verified using X-ray photoelectron spectroscopy. The impact of surface modification of Si-DLC on hydrophobicity was correlated with the viability of L929 mouse fibroblasts. The confocal microscopy and viability results indicated that oxygen-treated Si-DLC showed increased cell viability compared to untreated Si-DLC and fluorine-treated Si-DLC samples 5 days after seeding. The increased cell viability was correlated with the conversion of the hydrophobic surface of Si-DLC into a hydrophilic surface by oxygen plasma treatment. 相似文献
13.
D. Chicot E.S. Puchi-Cabrera X. DecoopmanF. Roudet J. LesageM.H. Staia 《Diamond and Related Materials》2011,20(10):1344-1352
Adhesion and hardness of Diamond-Like Carbon films are improved by nitriding of the steel substrate prior to PVD deposition. Since the mechanical properties of the nitrided steel layer are not homogeneous, i.e. a significant hardness decrease is observed in the upper nitrided layer close to the surface, an outer surface layer of ~ 15 μm is removed prior to the film deposition. In the present work, a 316L stainless steel substrate is nitrided in a cyanide-cyanate solution at 570 °C during 3 h. The coated system involved the deposition of a hydrogenated, amorphous carbon (a-C:H) solid lubricant of ~ 2 μm including a chromium carbide interlayer. The comparison between the hardness behavior of the DLC/steel and the DLC/nitrided steel systems reveals the existence of a very important hardness gap, which highlights the benefit of the nitriding treatment prior to coating deposition. In addition, the microhardness-depth profile is determined from a load-depth curve, by applying a simple hardness model. The predicted change in hardness is found to be in a very good agreement with the experimental profile, which allows the hardness determination both in the white layer and in the diffusion zone over ~ 30 μm in total depth. However, only the composite hardness modeling allows the accurate determination of the intrinsic hardness of the film. 相似文献
14.
Kai-Hung Yang Parand Riley Keith B. Rodenhausen Shelby A. Skoog Shane J. Stafslien Lyndsi Vanderwal Roger J. Narayan 《International Journal of Applied Ceramic Technology》2022,19(5):2545-2555
Silicon-incorporated diamond-like carbon (Si-DLC), an amorphous material containing Si atoms with sp3- and sp2-hybridized carbon, is a promising biomaterial for versatile biomedical applications due to its excellent mechanical properties, chemical inertness, biocompatibility, and antimicrobial capability. However, the antifungal properties of plasma-treated Si-DLC have not been systematically evaluated. In this study, Si-DLC coatings were deposited by chemical vapor deposition and further treated with either oxygen or fluorine plasma to render the surface anchored with different functional groups and hydrophobicity. Surface roughness was probed with atomic force microscopy, whereas bonding character and surface composition were assessed using Raman and X-ray photoelectron spectroscopy. Wettability and surface charge were investigated via water contact angle and zeta potential measurements. Antifungal assessment was performed using a Candida albicans multi-well plate screening technique and crystal violet biomass quantification. The results demonstrate that oxygen plasma–treated Si-DLC exhibited hydrophilic properties, lower negative zeta potential, and significant antifungal behavior. This material can potentially be applied on surfaces for the prevention of reduced nosocomial infections. 相似文献
15.
The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CNx) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CNx modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CNx layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CNx film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CNx film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant. 相似文献
16.
17.
18.
This paper reports the pump and probe experiment for in situ reflectivity measurements in the femtosecond laser ablation that brings about nanoscale modification of diamond-like carbon (DLC) film. The characteristic reflectivity changes observed demonstrate that the formation of periodic nanostructure is preceded by a change in bonding structure of DLC in the ablation at low fluences. We have observed a coherent nonlinear wave-mixing signal that can resolve the ultrafast interaction processes for the nanoscale modification on the film surface. Based on the results obtained, a model of the interaction process is proposed. 相似文献
19.
通过对不同反离子碳链长度(n=2,4,6,8,10,12)的双癸基二甲基羧酸铵的表面活性及泡沫性能、乳化性能和润湿性能进行测定,探讨反离子碳链长度对季铵盐表面活性剂的表面活性及应用性能的影响。结果表明:随着反离子碳链长度(n=2,4,6,8,10,12)的增加,双癸基二甲基羧酸铵的表面活性逐渐增强,其临界胶束浓度(cmc)逐渐减小,最低表面张力(γcmc)先降低后升高,当反离子碳链长度n=10时,γcmc达到最低,降低水表面张力20 m N/m的效能(pc20)逐渐增大,饱和吸附量(Гtotal)逐渐增大,单个分子占有面积(Am)逐渐减小;泡沫性能和乳化性能均随着反离子碳链长度的增加先增强后减弱;润湿性能随着反离子碳链长度的增加而逐渐增强。 相似文献