首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
为了有效地度量不同失真类型的图像质量,提出一种基于自然场景统计(NSS)模型的空域无参考图像质量评价算法。该算法利用自然图像归一化亮度系数的统计特征趋向于服从广义高斯概率分布的特性,首先在空域计算自然图像的梯度,通过梯度密度选取自然图像的兴趣区域,提取兴趣区域图像统计特征,建立多元高斯分布(MVG)模型;然后对测试图像建立同样的MVG模型;最终通过计算测试图像和自然图像在统计规律上的偏差来对测试图像的质量做出评价。实验证明该算法与主观评价具有较好的一致性。  相似文献   

2.
现有的通用型无参考图像质量评价方法大多是利用失真图像及其主观值来训练回归模型预测图像质量指标,然而这种方法需要消耗大量的时间进行训练,并且评价效果依赖于训练图像库中的失真类型,通用性较差,很难应用到实际场合中。为了解决数据库依赖问题,提出一种归一化的基于图像尺度不变性的无参考图像质量评价方法。该方法不依赖外部数据,将图像的统计特性及边缘结构特性作为图像质量评价的有效特征,利用图像多尺度不变性计算多尺度间的整体特征差异,从而预测图像质量。实验结果表明,所提方法对混合失真图像质量评价效果好,运行效率高,与目前现有的无参考图像质量评估方法相比具有较好的综合性能,具有较好的应用价值。  相似文献   

3.
朱映映  曹磊  王旭 《软件学报》2018,29(4):973-986
随着多客户端交互多媒体应用的快速发展,屏幕内容图像(Screen content image,SCI)的分发和处理与日俱增.图像质量评价课题的研究是其它许多应用的基础,至今图像质量评价课题研究的重点是传统自然图像,因此针对屏幕图像质量评价的研究就变的非常迫切和必要.客观图像质量评价算法的提出的基础建立在标准图像质量评价数据库上.本文首先构建了一个大规模的屏幕内容图像质量评价数据库(Immersive Media Laboratory screen content image quality database,IML-SCIQD).IML-SCIQD数据库包含参考图像25张以及经过10种失真处理的1250张失真图像.以建立的IML-SCIQD数据库为基础,考虑到屏幕内容图像图像区域和文本区域的视觉感知差异,在基于自然场景统计的无参考方法的启发下,本文提出了针对屏幕内容图像的无参考评价算法(Natural Scene Statistics based No Reference Screen Content Image Quality Assessment metric,NSNRS).NSNRS算法首先分别计算图像区域和文本区域的质量分数,再将这两个区域的质量分数结合起来得到整幅失真图像的质量分数.该算法与其它12种经典的客观评价算法,包括全参考算法,部分参考算法与无参考算法,在IML-SCIQD数据库和SIQAD数据库上进行了性能测试和对比,结果表明本文提出的算法优于经典的的无参考评价算法;就整个数据库而言,本文提出的算法可以达到与全参考方法相当的性能.  相似文献   

4.
提出了一种新的利用四元数小波变换的通用型无参考图像质量评价算法,其利用四元小波金字塔将二维图像映射到四维空间,每层可以表示为1个幅值和3个相位(Φ,θ,ψ),其中ψ相位包含丰富的图像纹理信息,能有效表征图像的结构信息。因此,通过提取各尺度ψ相位中能有效表征图像失真程度的特征,并构成特征向量,通过支持向量回归(support vector regression,SVR)模型预测图像质量得分。实验结果表明,该算法能有效反映各失真类型图像的视觉感知质量,斯皮尔曼等级相关系数值能达到0.942。  相似文献   

5.
基于色彩空间自然场景统计的无参考图像质量评价   总被引:3,自引:0,他引:3  
李俊峰 《自动化学报》2015,41(9):1601-1615
RGB色彩空间中各色彩分量间存在强相关性, 图像发生失真会改变各分量间的相关性. 基于此, 本文提出了一种新的通用无参考图像质量评价方法. 首先, 根据人类视觉对RGB色彩空间中绿色分量更为敏感的颜色感知特性, 提取了G分量MSCN系数及其4方向邻域系数的统计特征; 其次, 在分析RGB色彩空间中R、G及B分量间相关性的基础上, 分别计算RGB色彩空间各色彩分量及其纹理、相位间的互信息, 利用互信息作为统计特征来描述其各分量间的相关性; 进而, 结合上述统计特征, 分别利用SVR和SVC构建无参考图像质量评价模型和图像失真类型识别模型; 最后, 在LIVE、CSIQ 及TID2008图像质量评价数据库上进行了算法与DMOS (Different mean opinion score)的相关性、失真类型识别及计算复杂性等方面的实验. 实验结果表明, 本文方法的评价结果与人类主观评价具有高度的一致性, 在LIVE 数据库上的斯皮尔曼等级相关系数和皮尔逊线性相关系数均在0.942以上; 而且, 图像失真类型识别模型的识别准确率也高达93.59%, 明显高于当今主流无参考图像质量评价方法.  相似文献   

6.
现有的无参考图像质量评价算法多采用支持向量回归、神经网络等作为映射,训练过程需要大量样本,且泛化性能差(即在一个数据集上的训练识别效果好,在另一个数据集上可能很差),从而提出了基于稀疏表示的无参考图像质量评价算法。利用梯度幅值与拉普拉斯变换图像的联合统计信息和小波变换子带相关性组成特征字典,并对测试图像特征进行稀疏表示,最后综合稀疏系数与字典图像DMOS值获得预测质量得分。多数据库中大量实验结果表明,新算法在少量训练样本条件下即可获得优良而稳定的结果,且具有更好的泛化性能和稳定性。  相似文献   

7.
为具有多种失真的图像提供一个无参考质量评价通用模型,提出了基于可控金字塔的评价算法.该算法结合自然场景图像的统计特性,利用可控金字塔变换对图像进行多尺度多方向的分解,并经过较小的训练,得到未失真图像子带系数分布特征模型.根据不同子带系数对图像降质的影响设置权值,计算量化后失真图像系数的实际分布与未失真自然场景子带系数分布特征模型的偏离程度,以度量图像的质量.实验结果表明,该算法能较好地符合人类视觉的主观评价.  相似文献   

8.
黄晓生  严浩  曹义亲 《计算机应用》2014,34(10):2925-2929
针对传统无参考图像质量评价方法计算复杂、难以应用的问题,提出一种简单、直接的小波高频结构相似性的无参考高斯图像质量评价方法。该方法根据自然图像同尺度高频子带间结构相似度(SSIM)随着失真程度的增加而降低的性质,利用小波变换获取图像的同尺度不同方向的三个高频分量,通过分别计算图像高频子带间的峰值信噪比(PSNR)与结构相似度得出图像高频结构差异作为最终的图像客观评价指数。通过与三个公开图像数据库实验验证可知,提出的方法与主观评价具有较好的一致性,并且算法结合了物理意义明确的峰值信噪比与结构相似度,比传统方法算法运行更为简单快捷,评价一幅图像只需0.2s左右,具有良好的实用性。  相似文献   

9.
无参考图像质量评价综述   总被引:33,自引:4,他引:33  
王志明 《自动化学报》2015,41(6):1062-1079
图像质量对人类视觉信息的获取影响很大, 如何在没有参考图像的情况下准确地评价失真图像的质量是一个关键但又非常困难的问题. 本文回顾了近20年来无参考图像质量评价发展的主要技术. 首先,介绍了这一领域常用的衡量评价算法性能的技术指标,以及几个网上共享的典型图像质量评价数据库; 然后,对各种无参考图像质量评价算法进行详细的分类介绍和特点评析; 最后,基于典型数据库对近几年的一些非特定失真图像质量评价方法进行了性能测试和比较. 目的是为这一领域的研究人员提供一个较为全面的、有价值的文献参考.  相似文献   

10.
图像质量评价是图像处理领域的热门研究课题之一。图像质量评价研究的目标是设计算法,给出和人的主观视觉感受相符合的评价结果。在客观图像质量评价的几种方法中,由于无参考图像质量评价方法的灵活性,该方法正受到越来越多的关注。文章首先概述了图像质量评价的相关知识,并从无参考图像质量度量方法和评价算法等角度对无参考图像质量评价进行分析.最后概括了无参考图像质量评价发展的现状及其发展趋势。  相似文献   

11.
针对基于稀疏表示的图像质量评价算法特征信息挖掘不充分,忽略稀疏特性等问题进行了研究,提出了一种基于稀疏表示与能量分解的无参考图像质量评价方法。首先利用L1范数作为稀疏惩罚项学习稀疏编码字典,并计算待评价图像的稀疏表示系数。然后对稀疏系数矩阵进行奇异值分解,并重建若干个等能量的子矩阵。最后联合max-pooling和L1范数描述稀疏系数矩阵及其子矩阵特征,L1范数刻画着稀疏性,子矩阵丰富了特征信息。实验结果表明,该算法能在无参考的情况下更好地评价图像质量,主客观分值一致性好且时间复杂度较低,具有较好的应用价值。  相似文献   

12.
针对现有的评价方法大都将图像变换到不同的坐标域问题,提出一种基于空域自然场景统计(NSS)的通用型无参考立体图像质量评价模型。在评价中为了更好地结合人类双目视觉特性, 将左右图像融合成一幅独眼图;评价模型首先统计独眼图归一化亮度(CMSCN)系数分布规律,进而对独眼图提取空域自然场景统计特征;其次,统计视差图归一化亮度(DMSCN)系数的分布规律,并对用光流法得到的视差图提取同样的特征;最后,通过支持向量回归(SVR)建立立体图像特征信息与主观评价值(DMOS)之间的关系,从而预测得到图像质量的客观评价值。实验结果表明,该评价模型对立体数据测试库进行评价,其Pearson线性相关系数(PLCC)和Spearman等级相关系数(SROCC)值均在0.94以上;对于非对称立体图像库,PLCC和SROCC值分别接近0.91和0.93。该模型能够很好地预测人眼对立体图像的主观感知。  相似文献   

13.
针对模糊图像高频分量的特性,提出了一种针对高斯模糊图像的无参质量评价方法。该方法利用小波变换对模糊图像提取高频分量,在高频分量功率谱上构造评价指标。实验结果表明提出的评价指标优于PSNR和SSIM,其客观评价分数与主观评价分数具有更好的一致性。  相似文献   

14.
目的 面向多失真混杂的图像质量盲评价问题目前仍然是计算机视觉领域具有挑战性的工作之一,无人机图像受成像条件影响混杂多类失真,图像质量的准确评价是其效能发挥的关键环节。为此,引入并改进了基于自然场景统计的距离度量评价模型,提出多失真混杂的无人机图像质量盲评价方法。方法 从图像的结构性、信息完整性和颜色性3个不同的角度研究并提取了与无人机图像质量敏感的特征因子集;以实拍标准测绘图像库为原始图像获得MVG特性参数作为度量基准解决了盲评价中缺乏训练集的问题;构建了以实飞图像为样本的无人机图像质量数据库(UAV image set),为相关问题的研究提供数据集和评价参考。结果 针对所构建的数据库,本文算法在主客观一致性、算法运行时间上与其他算法进行了对比实验。相比较其他经典算法,本文算法的主客观一致性较高,达到了0.8以上,运行时间较快,过到1.2 s。此外本文还给出了块大小对算法影响以及单特征对图像的评价结果,证明算法选择的图像块大小和图像特征符合质量评价的需要。结论 针对无人机图像所包含的多失真构建质量评价综合模型,该模型可满足无人机图像质量需求。  相似文献   

15.
图像质量评价一直是图像处理和计算机视觉领域的一个基础问题,图像质量评价模型也广泛应用于图像/视频编码、超分辨率重建和图像/视频视觉质量增强等相关领域。图像质量评价主要包括全参考图像质量评价、半参考图像质量评价和无参考图像质量评价。全参考图像质量评价和半参考图像质量评价分别指预测图像质量时参考信息完全可用和部分可用,而无参考图像质量评价是指预测图像质量时参考信息不可用。虽然全参考和半参考图像质量评价模型较为可靠,但在计算过程中必须依赖参考信息,使得应用场景极为受限。无参考图像质量评价模型因不需要依赖参考信息而有较强的适用性,一直都是图像质量评价领域研究的热点。本文主要概述2012—2020年国内外公开发表的无参考图像质量评价模型,根据模型训练过程中是否需要用到主观分数,将无参考图像质量评价模型分为有监督学习和无监督学习的无参考图像质量评价模型。同时,每类模型分成基于传统机器学习算法的模型和基于深度学习算法的模型。对基于传统机器学习算法的模型,重点介绍相应的特征提取策略及思想;对基于深度学习算法的模型,重点介绍设计思路。此外,本文介绍了图像质量评价在新媒体数据中的研究工作及图像质量评价的应用。最后对介绍的无参考图像质量评价模型进行总结,并指出未来可能的发展方向。  相似文献   

16.
为了更有效的评价各种失真类型的图像,本文提出了一种新颖的通用型无参考图像质量评价方法,它采取学习感知特征和空域自然统计特征相结合的方法来构建图像质量评价模型。方法是在提取显著分块的36个空域自然统计特征的基础上,增加基于相位一致性熵、基于相位一致性均值、梯度均值以及失真图像的熵四个感知特征,采用支持向量机回归的学习方式来构建图像特征与人的主观分数的映射关系,进而根据所提取特征预测图像质量。在LIVE图像库上的实验表明,文中算法预测质量分数与人的主观分数具有较高的一致性,基本呈线性关系,鲁棒性较好,运行时间较短,综合性能较好。  相似文献   

17.
提出了一种新的基于Tchebichef矩的无参考模糊图像质量评价方法。将模糊图像通过低通滤波得到再模糊图像;将模糊图像和再模糊图像分别进行8×8分块并计算每一图像块的Tchebichef矩;根据Tchebichef矩块的值将原始图像块分为平滑块,纹理块和边缘块,计算原始图像和再模糊图像对应块之间的Tchebichef矩向量相似度,得到三类图像块的局部平均相似度;进行融合得到原始图像的最终评价质量。实验结果表明,该方法优于其他算法,与主观评分有更好的一致性,能够更准确地评价模糊图像质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号